Calculation Booklet
Engineering Express Project 22-52551, Shane McArthur

Scope of Work:	Structural Design \& Installation Of 1 Residential, Host Attached Pergola. Includes Calculaiton Of Loading, Members, Connections, Foundations, And Connection To Existing Host Structures As Required.
Project Information	22-52551 Shane McArthur Shect Address: 8609 SE 78th St Mercer Island, WA 98040
Design of:	At Grade, Residential, Host Attached Pergola With Mechanically Operated Louvered Roof
Prepared For:	StruXure Outdoor of Washington 9116 E Sprague Ave \#547 Spokane, WA 99206 509-928-0880

General Notes:

This calculation package is to be submitted for permit alongside a set of certified drawings and details which bears the same project name, number, address, and certifying Professional Engineer as shown in the certification below. Any project notes, details, or design information in that drawing set shall also apply to this report (in the case of any uncertainty, the more stringent information shall apply). This structure shall be built in conformance with any building codes referenced on that drawing set, as well as any local building codes required for the project address. This document shall not be used or reproduced without the original signature \& raised seal of the certifying P.E. Alterations, additions or other markings to this document are not permitted and invalidate our certification. Photocopies and unsealed documents are not to be accepted. Except as expressly provided herein, no additional cetifications or
 affirmations are intedned.

Project Designer: MD
Project Reviewer: RS
Sealing Engineer: Frank Bennardo PE

For Additional Information, Scan the QR Code here:

Engineer's Seal Below Valid For Pages 1 Through 47

Digitally signed by Frank Bennardo Reason: Printed copies of this document are not considered signed and sealed; The signature must be verified on any electronic copies.
Date: 2022.06.02 09:49:24-04'00'
Frank Bennardo PE
PE\# 56089
CA\# 4018

Work Prepared For: StruXure Outdoor of Washington
Project: 22-52551-Shane McArthur
Design Overview Of: Project Overview

Structure Layout

Total Width 20.00 ft
Total Length 20.00 ft
Mean Roof Height 11.00 ft
Structure Support Host Attached
Roof Style Louvers
Roof Slope 0.0 / 12

Design Criteria (Detailed Calculations On Following Pages)

Loading Inputs

Dead Load 5.0 psf
Design Live Load 16.0 psf
Risk Category
Ultimate Wind Speed 110 mph
Exposure Category D
HVHZ NON-HVHZ
Wind Flow Clear

Ground Snow Load 30.0 psf
Unredicible Snow Load? FALSE
Design Snow Load 33.9 psf
Nominal Ice Thickness 1.00 in

Seismic Site Class D (DEFAULT)
Response Acceleration, Ss 1.5 s
Response Acceleration, $\mathrm{S}_{1} 0.5 \mathrm{~s}$
Seismic Site Category
TL 6 s
Total Effective Seismic Design
Force, Fp 1871.4 lbs

ASD Design Load Combinations

Per ASCE 7-16, Ch 2.4

Components \& Cladding

Gravity $\quad 38.9 \mathrm{psf} \quad \mathrm{D}+\mathrm{S}$
Uplift $\quad-10.0 \mathrm{psf} \quad$ Min Requirement
Lateral $\quad 15.9 \mathrm{psf} \quad \mathrm{D}+0.6 \mathrm{~W}$

Main Wind Force

Gravity 38.9 psf D + S
Uplift $\quad-13.5 \mathrm{psf} \quad 0.6 \mathrm{D}+0.6 \mathrm{~W}$
Lateral $\quad 15.9 \mathrm{psf} \quad \mathrm{D}+0.6 \mathrm{~W}$

Work Prepared For: StruXure Outdoor of Washington
 Project: 22-52551 - Shane McArthur
 Design Overview Of: Roof And Beam Design Overview

Roof Design - Louvers

Max Louver Span	10.00 ft
Aluminum Alloy:	$6063-\mathrm{T} 6$
Louver Width	5.087 in
Louver Height	5.006 in
Louver Spacing	8 in

$\begin{aligned} \text { Strength Capacity \% } & =32 \% \\ \text { Deflection Capacity } & =\quad 44 \%\end{aligned}$

Louvers To Be Rotated To Open Position
During Named Wind Event (75 MPH+)

Structural Beam Designs - (Critical Members Shown)

Main Beam \#1 Design
(\perp Roof Member Span)
Beam \#1 Material 6063-T6
Beam \#1 Max Span 19.50 ft
Beam \#1 Overhang L 0.00 ft
Beam \#1 Overhang R 0.00 ft
Beam Width 2.0 in
Beam Height 8.0 in
Beam Thickness 0.250 in
\# || Beams in Section 1
Beam \#1 Sx 8.150 in 3 Beam Location
Beam \#1-\# Spans

Edge
1

Main Beam \#2 Design (\mid \| Roof Member Span)		
Beam \#2 Material	$6063-\mathrm{T6}$	
Beam \#2 Max Span	10.00 ft	
Beam \#2 Overhang L	0.00 ft	
Beam \#2 Overhang R	0.00 ft	
Beam Width	2.0 in	
Beam Height	8.0 in	
Beam Thickness	0.250 in	
\#\|	Beams in Section	1
Beam \#2 Sx	$8.150 \mathrm{in}^{3}$	
1st Intermediate Beam \#1 Offset "a"	0.00 ft	
2nd Intermediate Beam \#1 Offset "b"	0.00 ft	
Beam Location	Edge	
Beam \#2 - \# Spans	2	

Strength Capacity \% = 100\%
Deflection Capacity = 73\%

Strength Capacity \% = 6\%
Deflection Capacity = 0%

Work Prepared For: StruXure Outdoor of Washington
Project: 22-52551-Shane McArthur
Design Overview Of: Post \& Connection Design

Post Design (Critical Post Shown)

Post Material	$6063-\mathrm{T6}$
Post Location	Edge
Post Height	11.00 ft
Post Width	8.0 in
Post Depth	8.0 in
Post Thickness	0.188 in
Post \#1 Sx	$14.910 \mathrm{in}^{3}$
Fascia Height	8.0 in

Tributary Width 9.75 ft
Tributary Length 10.00 ft
Strength Capacity \% = 32\%
Deflection Capacity = 12%

Reactions On Foundation
Gravity $/$ Compression $=3.79 \mathrm{Kip}$ Uplift / Tension = $\quad-1.32 \mathrm{Kip}$ Lateral $/$ Shear $=0.54 \mathrm{Kip}$ Bending $/$ Moment $=4.1 \mathrm{Kip}-\mathrm{ft}$

Connection Design

Loaded Beam To Perimeter Beam
Total \# Screws $\quad 6$
Screw Type '-14 SMS, 316 SS
Tensile Strength 2985 lb
Shear Strength
2235 lb
Connection Interaction $=$
94%

Work Prepared For: StruXure Outdoor of Washington
Project: 22-52551 - Shane McArthur
Design Overview Of: Foundation and Anchorage Design

Concrete Foundation Design \& Reactions

Footing Type Isolated Footing
4" Slab Over Footing? FALSE
Footing Lendth 36.0 in
Footing Width 36.0 in
Footing Depth 30.0 in

Footing Name 36 " $\times 36$ " $\times 30$ " Isolated Footing
Required Reinforcement (4) \#5, Each Way, Top \& Bottom

Footing Design Capacities

$$
\text { Uplift Capcity \% = } 39 \%
$$

Sliding Capacity \% = 45\%
Overturning Capacity $(X) \%=96 \%$
Overturning Capacity $(Y) \%=69 \%$
Bearing Pressure Capacity $=50 \%$
Baseplate Design
Post Attachment Bolted Baseplate
Baseplate Length 12.0 in
Baseplate Width 12.0 in
Baseplate Thickness 0.250 in

Anchorage To Concrete - 3/8" Dia, Has Threaded Rods With Hy-200 Epoxy @ 4.5" Embed
 Anchor Diameter 0.375 in

Anchor Embedment 4.50 in
Design Tension Strength 7,431 lbs
Design Shear Strength $22,954 \mathrm{lbs}$
Strength Capacity \% = 84\%

Work Prepared For: StruXure Outdoor of Washington
Project: 22-52551-Shane McArthur
Design Overview Of: Host Attachment Design

Ledger Beam Host Connection		
Attachment Length	20.00 ft	
Tributary Width	10.00 ft	
Host Material	Southern Yellow Pine	
Anchor Type	Wood Lag Screw	
Anchor Dia	0.500 in	
Anchor Spacing	16.0 in	
\# Anchors Per Spacing	3	

Work Prepared For: StruXure Outdoor of Washington
Project: 22-52551-Shane McArthur
Calculations For: Design Loading from Structure Classificaition \& Wind

Loading Design Criteria:

Design Standard:	ASCE 7-16
Risk Category:	II

Overall Width or Projection X, W $=20.00 \mathrm{ft}$
Overall Length $\mathrm{Y}, \mathrm{L}=20.00 \mathrm{ft}$
Total Area, $\mathrm{A}=400.0 \mathrm{ft}^{2}$
Installaton Elevation $=\quad 0.00 \mathrm{ft}$
Structure Height $=\quad 11.00 \mathrm{ft}$
Mean Roof height, $\mathrm{h}=11.00 \mathrm{ft}$ Roof Slope, $\Theta=0.00^{\circ} \quad$ (0" Per 12" of Slope) Structure Type $=$ Host Attached

Dead and Live Loading:

Design Dead Load: $\quad 5.0$ psf
Design Roof Live Load: 20.00 psf
(Not-Occupiable Ordinary Flat, Pitched, and Curved Roofs)
Live Load Reduction For Ordinary Roofs, Awnings, And Canopies (Per IBC 1607.13.2.1)
$\mathrm{L}_{\text {reduced }}=\mathrm{L}_{\text {design }}{ }^{*} \mathrm{R}_{1}{ }^{*} \mathrm{R}_{2}$
Reduction for Large Area, $\mathrm{R}_{1}=0.80$
Reduction for Large Slope, $\mathrm{R}_{2}=1.00$
Reduced Roof Live Load, $L_{R}=16.00$ psf

Wind Design Conditions:

Ultimate Wind Velocity, Vult = Exposure Category:
$110 \mathrm{mph} \quad$ (3-Second Gust)
D
Wind Flow Through Structure: Clear
$\begin{array}{lcl}\text { Roof Wind Porosity: } & 50 \% \\ \text { Wall Wind Porosity: } & 100 \%\end{array} \quad(0 \%=$ Solid $) \quad \begin{aligned} & \text { Roof Type: } \\ & \text { Wall Type: Open Walls }\end{aligned}$
Directionality Factor, $\mathrm{Kd}=0.85$
Gust Effect Factor, G = 0.85
Velocity Pressure Coefficient, Kz = 0.98
Topographic Factor, Kzt = 1
Velocity Pressure, $\mathrm{q}_{\mathrm{z}}=25.70$ psf

Work Prepared For: StruXure Outdoor of Washington
Project: 22-52551 - Shane McArthur
Calculations For: Design Loading from Structure Classificaition \& Wind
Gravity \& Uplift Loads on Components \& Cladding for Structure Support, Open Structures
(Per ASCE 7-16 Chapter 30.11)
Note: Loading Not Applicable For Components And Cladding On Enclosed Structures
Effective Component Length, $L_{1}=10.00 \mathrm{ft}$ Roof Component Considered: Louver Blade
Effective Component Width, $\mathrm{W}_{1}=0.42 \mathrm{ft}$ Least Horizontal
Effective Wind Area, $\mathrm{A}_{\mathrm{e}}=4.24 \mathrm{ft}^{\wedge} 2 \quad$ Dimension, $\mathrm{a}=3.00 \mathrm{ft}$
Host Structure Eave Height, he $=26.00 \mathrm{ft}$

$$
A \leq a^{\wedge} 2
$$

Positive Pressure Coefficient, $\mathrm{CN}_{\mathrm{p}}=0.6$
Negative Pressure Coefficient, $\mathrm{CN}_{\mathrm{n}}=-0.5$
Velocity Pressure With Roof Porosity, $\mathrm{q}_{\mathrm{z}}=12.85 \mathrm{psf}$
C\&C Gravity Wind Load, $W_{p}=6.55$ psf $=q z * G * C N p$
C\&C Uplift Wind Load, $W_{n}=-5.24$ psf $=q z * G * C N n$

Gravity \& Uplift Loads On Monoslope, Free Roof Main Wind Force Resisting System:
(Per ASCE 7-16 Chapter 27.3-4 \& 27.3-7 - MWFRS Directional Methodology)

Wind Direction, $\gamma=0^{\circ}$		Wind Direction, $\mathrm{y}=180^{\circ}$	
Windward Coefficient, Load Case A, $\mathrm{C}_{\mathrm{NWa}}=$	1.2	CNWa =	1.2
Windward Coefficient, Load Case B, $\mathrm{C}_{\text {NWb }}=$	-1.1	CNWb =	-1.1
Leeward Coefficient, Load Case A, $\mathrm{C}_{\text {NLa }}=$	0.3	CNLa $=$	0.3
Leeward Coefficient, Load Case B, $\mathrm{C}_{\text {NLb }}=$	-0.1	CNLb =	-0.1
Wind Direction, $\gamma=90^{\circ}$ (Critical Values at Windward Fascia)			
Windward Coefficient, Load Case A, $\mathrm{C}_{\mathrm{Na}}=$	-0.8	$\mathrm{B}, \mathrm{C}_{\mathrm{Nb}}=$	0.8

Gravity \& Uplift Loads On Monoslope, Host Attached Main Wind Force Resisting System:
(Per ASCE 7-16 Chapter 30.11- MWFRS Methodology)

Effective Wind Area, $\mathrm{A}_{\mathrm{EF}}=$ + Coefficient, $\mathrm{GC}_{\mathrm{pn}+}=$	$\begin{gathered} 400 \mathrm{ft}^{2} \\ 0.6 \end{gathered}$	$h_{c} / h_{e}=0.42$ - Coefficient, $\mathrm{GC}_{\mathrm{pn}-}=\quad-0.5$		
Critical Positive Coefficient, $\mathrm{C}_{\mathrm{Np}}=$	0.6	Roof Drag Factor (Lateral Pressures)		
Critical Negative Coefficient, $\mathrm{C}_{\mathrm{Nn}}=$	-0.5	Flat Roof	Trellis	Open Louvers
		1.0	1.1	1.25

MWFRS Gravity Wind Load, $\mathrm{WL}_{\mathrm{p}}=$	6.55 psf	= qz * Roof Porosity * G * CNp
MWFRS Uplift Wind Load, WL ${ }^{\text {= }}$	-5.24 psf	= qz * Roof Porosity * G * CNn

Work Prepared For: StruXure Outdoor of Washington
Project: 22-52551 - Shane McArthur
Calculations For: Design Loading from Structure Classificaition \& Wind
Lateral Wind Loads on Open or Partially Enclosed Buildings with Transverse
Frames and Pitched Roofs
(ASCE 7-16 MWFRS - Ch 28.3.5)

For Open Structures, The Following Lateral Pressure Equation Shall Apply:

$$
p_{\text {open walls }}=q_{h}\left[\left(\mathrm{GC}_{p f}\right)_{\text {Windward }}-\left(\mathrm{GC}_{\mathrm{pf}}\right)_{\text {Leeward }}\right] * \mathrm{~K}_{\mathrm{B}} * \mathrm{~K}_{\mathrm{S}} * \text { Roof Drag Factor }
$$

Where The Gcpf Values Are The Average Of The Load Case B Values For The Edge And Wall Conditions:

```
            \(G_{\text {pf Windward }}=0.463\)
                        \(\mathrm{GC}_{\mathrm{pf} \text { Leeward }}=\quad-0.332\)
            Building Width, \(B=20.00 \mathrm{ft}\)
\(\mathrm{K}_{\mathrm{B}}=\) Frame Width Factor \(=1.600 \quad(=1.8-0.01 \mathrm{~B})(\) Minimum 0.8)
    Effective Solid Area, \(\mathrm{A}_{\mathrm{S}}=\quad 35.3 \mathrm{ft}^{2} \quad\) Open Walls
Total End Wall Area, \(A_{E}=220.0 \mathrm{ft}^{2}\)
    Solidity Ratio, \(\phi=0.161 \quad\left(=A_{S} / A_{E}\right)\)
    \(\mathrm{K}_{\mathrm{S}}=\) Shielding Factor \(=0.646 \quad\left(=0.6+0.073^{*}(\#\right.\) Frames \(\left.(\min 3)-3)+\left(1.25^{*} \phi^{\wedge} 1.8\right)\right)\)
    Roof Drag Factor 1.25
Open Frame Lateral Pressure, \(\mathbf{p}=26.42\) psf
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ Roof Drag Factor } \\
\hline Flat Roof & Trellis & Open Louvers \\
\hline 1.00 & 1.1 & 1.25 \\
\hline
\end{tabular}
```

MWFRS Gravity, Uplift, \& Lateral Pressures For Enclosed And Partially Enclosed
Low Rise Structures \& Host Atachment Directions
(Per ASCE 7-16 CH 28.3.1 - MWFRS Envelope Methodology)

Enclosue Classification Open Building		(Host Attached Flow)	
External Coefficient, GCpf = See Below (ASCE 7-16 Figure 28.3-1)			
Internal Coefficient, GCpi =	± 0.00 (ASCE 7-1	ble 26.13-1)	
Lateral Roof Drag Factor 1.25			
Critical GCpf Values Per Load Case \& Surface Location			
Max GCpf - Windward		Min GCpf - Leeward	
	Roof Wall	Roof	Wall
Load Case A	-0.37 0.40	-0.69	-0.29
Load Case A (Edge)	-0.53 0.61	-1.07	-0.43
Load Case B	-0.37 0.40	-0.69	-0.45
Load Case B (Edge)	-0.53 0.61	-1.07	-0.48
Applied Wind Pressure, p	qz * (GCpf - GCpi)		*(Envelope Procedure Results in Only Uplift
Envelope Gravity Load, WLep, =	0.00 psf $=q z^{*} \mathrm{G}^{*}(\mathrm{C}$	pi) ($\mathrm{Max}+)^{\star}$	On Windward And
Envelope Uplift Load, WLnp =	-27.50 psf $=q z^{*} \mathrm{G}^{*}(\mathrm{C}$	pi) (Min -)	Leeward Roof
Envelope Lateral Load, $\mathrm{WL}_{\mathrm{L}}=$	19.60 psf $=q z^{*} G^{*}(C$	pi) (Max \pm)	Surfaces When Slope is Low)

Work Prepared For: StruXure Outdoor of Washington
Project: 22-52551 - Shane McArthur
Calculations For: Snow Loading

Calculation of Design Snow Loading

Structure Type $=$ Host Attached
Ground Snow Load, Pg = 30.0 psf
Snow Loading Unreducible Per Local Codes? FALSE

Exposure Factor, $\mathrm{Ce}=$	1.0	Partially Exposed
Thermal Factor, $\mathrm{Ct}=$	1.2	Unheated \& Open Air Structure
Importance factor, $\mathrm{Is}=$	1.0	Risk Category II
Roof Slope $=$	0.00°	Flat Roof $\left(\right.$ Slope $\left.<5^{\circ}\right)$
Width (From Eave To Ridge), $\mathrm{W}=$	20.0 ft	
Roof Style $=$	Louvers	
Roof Snow Porosity $=$	0%	
Snow Density, $\mathrm{Y}=$	17.90 pcf	$=0.13^{*} \mathrm{Pg}+14<30 \mathrm{psf}$
Slope Factor, Cs $=$	1.00	(Figure $7.4-1)$

Balanced Snow Loads

Snow Load On Flat Roof (Slope $<5^{\circ}$), $\mathrm{P}_{\mathrm{f}}=$ Snow Load On Sloped Roof (Slope $<5^{\circ}$), $\mathrm{P}_{\mathrm{s}}=$
25.2 psf 25.2 psf

FALSE
0.00 psf

Drifts on Lower Roofs (Aerodynamic Shade)

Include Surcharge Due To Drift Loading? (Structure Shall Experience Snow Drift)

Assumed Length Of Upper Roof, lu1 = Attached Structure Total Projection X, lu2 = Height From Top Of Lower Roof To Top Of Eave, hc = Height Of Leeward Snow Drift, $\mathrm{h}_{\mathrm{d} 1}=$ Height Of Windward Snow Drift, $\mathrm{h}_{\mathrm{d} 2}=$ Governing Drift Height, $\mathrm{h}_{\mathrm{d}}=$ Governing Drift Width, W = Drift Height At Edge Of Lower Roof, $\mathrm{h}_{\text {end }}=$ Surcharge Load Distributed Over Drift Width, $\mathrm{p}_{\mathrm{d}}=$ Surcharge Load Distributed Over Tributary Area, $\mathrm{p}_{\mathrm{d}}=$

Rain-On-Snow Surcharge Required? (Ch 7.10)

$$
\text { Height of Balanced Snow, } h_{b}=
$$

TRUE
40.0 ft
20.0 ft 26.0 ft $1.41 \mathrm{ft}=\mathrm{Pf} / \mathrm{Y}$
2.20 ft
1.08 ft
2.20 ft
8.79 ft
0.00 ft
19.67 psf
8.65 psf

TRUE
$=\operatorname{Max}\left(I^{*} 20\right),\left(0.7{ }^{*} \mathrm{Ce}^{*} \mathrm{Ct}^{*} \mathrm{I}^{*} \mathrm{Pg}\right),(5)$
$=C s$ * Pf
= Balanced Load + Distributed Drift Surcharge

Work Prepared For: StruXure Outdoor of Washington
Project: 22-52551 - Shane McArthur
Calculations For: Ice Loading Calculations

Ice Load Due to Freezing Rain (per ASCE 7-16 - Chapter 10)

Acounting for Accumulating Ice on Louver Blades

$$
\begin{array}{rc}
\text { Nominal Ice Thickness, } \mathrm{t}_{\mathrm{i}}= & 1.00 \mathrm{in} \\
\text { Risk Category }= & \mathrm{II} \\
\text { Topographic Factor, } \mathrm{K}_{\mathrm{zt}}= & 1.0 \\
\text { System Height, } \mathrm{Z}= & 11.00 \mathrm{ft} \\
\text { Importance Factor for Icing, } \mathrm{I}_{\mathrm{i}}= & 1.00 \\
\text { Ice Density, } \mathrm{I}_{\mathrm{d}}= & 56.0 \mathrm{pcf} \quad \text { (56 pcf default) } \\
\text { Snow Density, } \mathrm{g}= & 17.90
\end{array}
$$

Member Properties

Louver Blade Louver Beam
Depth, d = 5.0 in 8.0 in
Width, bf $=5.1$ in 2.0 in
Length, $\mathrm{I}=10.00 \mathrm{ft} \quad 19.50 \mathrm{ft}$
Spacing, s = 8.0 in O.C.

Ice Thickness Increasing Factor, $\mathrm{F}_{\mathrm{z}}=0.8960=(\mathrm{Z} / 33)^{0.1}$
Design Ice Thickness, $t_{d}=0.90=t_{i}{ }^{*} l_{i}{ }^{*} f_{z}{ }^{*}\left(\mathrm{~K}_{\mathrm{zt}}\right)^{0.35}$
Weight of Ice (per td), $W_{i}=4.18 \mathrm{psf}=(\mathrm{td} / 12){ }^{*} I_{d}$

Ice Loading on Individual Members

Louver Blade Ice Loading (Single Member)

Circumscribing Diameter Of Member, $\mathrm{D}_{\mathrm{c} 1}=7.14 \mathrm{in}=\sqrt{ } \mathrm{d}^{2}+\mathrm{bf}^{2}$

$$
\text { Area of Ice, } A_{i 1}=22.61 \mathrm{in}^{\wedge} 2=\pi^{*} t_{d}{ }^{*}\left(D_{c}+t_{d}\right)
$$

Uniform Distributed Ice Load, $\mathrm{W}_{\mathrm{i} 1}=8.79 \mathrm{plf}=\mathrm{A}_{\mathrm{i}}{ }^{*} \mathrm{I}_{\mathrm{d}}$

Louver Beam Ice Loading

Circumscribing Diameter Of Member, $D_{\text {cBeam }}=8.25$ in $=\sqrt{ } d^{2}+b f^{2}$
Area of Ice, $A_{\text {iBeam }}=25.73 \mathrm{in}=\pi^{*} t_{d}{ }^{*}\left(D_{c}+t_{d}\right)$
Uniform Distributed Ice Load, $\mathrm{W}_{\text {iBeam }}=10.01$ plf $=\mathrm{A}_{\mathrm{i}}{ }^{*} \mathrm{I}_{\mathrm{d}}$

Louver Blade Ice Loading Acting On Louver Beam

Ice Load On First Single Member, $\mathrm{W}_{\mathrm{i} 1}=8.79$ plf
Tributary Width of Louver Blade, Trib $=10.00 \mathrm{ft}$
Additional Ice Load on Beam, $\mathrm{W}_{\mathrm{i}(\text { Beam })}=11.0$ plf $=\mathrm{W}_{\mathrm{i} 1}{ }^{*}$ Trib $/$ Spacing

$$
\begin{array}{rlll}
\mathbf{W}_{\mathrm{i}(\text { Louver })} & & 8.79 \text { plf } & \text { Uniform Linear Ice Load (Louver Blade) } \\
\mathbf{W}_{\mathrm{i}(\text { Beam })} & =10.01 \text { plf } & \text { Uniform Linear Ice Load (Ice on Beam Only) } \\
\mathbf{W}_{\mathrm{i}(\text { Beam Total) })} & \mathbf{2 1 . 0 0} \text { plf } & \text { Total Additional Loading On Beam }
\end{array}
$$

Work Prepared For: StruXure Outdoor of Washington
 Project: 22-52551 - Shane McArthur
 Calculations For: Seismic Design Criteria \& Loading

Seismic Design Criteria		
Max Considered Response Acceleration For 0.2 S, S_{s}	$=$	1.462
Max Response Acceleration At $1 \mathrm{~S}, \mathrm{~S}_{1}$	$=$	0.504
Overall Width or Projection X, W	$=$	20.00 ft
Overall Length Y, L	$=$	20.00 ft
Total Area, $\mathrm{A}=$	400.0 ft	
Height of Structure, $\mathrm{H}=$	11.00 ft	
Attached to Host Structure?	TRUE	
Laterally Supported by Host in Both Directions?	FALSE	

Structure Dead Load $=$	5 psf
Ground Snow Load $=$	30 psf

$$
\leq 30 \text { PSF - Not }
$$

Considered in Seismic
Short Period Amplification Factor, $\mathrm{F}_{\mathrm{a}}=$ 1.2
Long Period Amplification Factor, $\mathrm{F}_{\mathrm{v}}=$ 1.5
Modified Spectral Response Acceleration At $0.2 \mathrm{~S}, \mathrm{~S}_{\mathrm{MS}}=$ 1.754
$\mathrm{F}_{\mathrm{a}}{ }^{*} \mathrm{~S}_{\mathrm{s}}$Modified Spectral Response Acceleration At $1.0 \mathrm{~S}, \mathrm{~S}_{\mathrm{M} 1}=$0.756
Spectral Response Acceleration Parameters
Design Spectral Response Acceleration At $0.2 \mathrm{~S}, \mathrm{~S}_{\mathrm{DS}}=$ $1.170 \quad(2 / 3)^{*} \mathrm{~S}_{\mathrm{ms}}$
Design Spectral Response Acceleration At 1.0 S, $\mathrm{S}_{\mathrm{D} 1}=$ $0.504 \quad(2 / 3)^{*} \mathrm{~S}_{\mathrm{M} 1}$

Structural Design Requirements

$\begin{array}{rcc}\text { Approximate Fundamental Period (s), } T_{a}= & 0.121 \mathrm{~s} \quad C_{t}{ }^{*} h_{n}{ }^{x} \\ \text { Geographic Long Transition Period (s), } T_{L}= & 6 \mathrm{~s}\end{array}$

$$
\text { Vertical Seismic Load Effect, Ev }=
$$ Response Modification Coefficient, $\mathrm{Rp}=$

0.82 psf Overstrength Factor, $\Omega=$2.002.500
Min Seismic Response Coefficient, CS Min = 0.101
Component Importance Factor, Ip = 1.00
1.00

Work Prepared For: StruXure Outdoor of Washington
Project: 22-52551 - Shane McArthur
Calculations For: ASD Loading Combinations per ASCE 7-16, Chapter 2.4 Formatted For Use With Freestanding or Host Attached Pergolas

Unfactored, Calculated, or Provided Loads

Loading From Structure		
Dead Load	5.0 psf	$\mathrm{D}=$
Live Load	0.0 psf	$\mathrm{L}=$
Reduced Roof Live Load	16.0 psf	psf
Re	$\mathrm{L}_{\mathrm{R}}=16.0 \mathrm{psf}$	

Loading From Wind

Components \& Cladding

Gravity (+)	6.6 psf	$\mathrm{W}_{\mathrm{CC}+}=6.6 \mathrm{psf}$
Uplift (-)	-5.2 psf	$\mathrm{W}_{\mathrm{CC}-}=-5.2 \mathrm{psf}$

Main Wind Force Resisting System

Gravity (+)	6.6 psf	$\mathrm{W}_{\text {MWF }+}=6.6 \mathrm{psf}$
Uplift (-)	-27.5 psf	$\mathrm{W}_{\text {MWF- }}=-27.5 \mathrm{psf}$

Lateral Force
On Fascia \& Roof Drag
On Walls \& Posts $\quad 26.4$ psf

$$
\begin{aligned}
\mathrm{W}_{\text {LAT FAC }} & =26.4 \mathrm{psf} \\
\mathrm{~W}_{\text {LAT WALL }} & =26.4 \mathrm{psf}
\end{aligned}
$$

Loading from Snow

Ground Snow Load $\quad 30.0$ psf
Flat Roof Snow Load
Sloped Roof Snow Load
25.2 psf
$\mathrm{p}_{\mathrm{f}}=25.2 \mathrm{psf}$
25.2 psf
$\mathrm{p}_{\mathrm{s}}=25.2 \mathrm{psf}$
Unreducible Snow Load
33.9 psf

Design Snow Load $\quad 33.9$ psf
$\mathrm{S}=33.9 \mathrm{psf}$
Loading from Icing
Area Ice Loading $\quad 8.8 \mathrm{psf}$
Reduced Wind Forces due to Ice Load
Components \& Cladding

Gravity (+)	1.9 psf
Uplift (-)	-1.6 psf

$$
\begin{aligned}
& \mathrm{W}_{\text {CCicet }}=1.9 \mathrm{psf} \\
& \mathrm{~W}_{\text {CCice- }}=-1.6 \mathrm{psf}
\end{aligned}
$$

Main Wind Force Resisting System
Gravity (+)
1.9 psf

Uplift (-)
-8.2 psf

$$
\begin{aligned}
& \mathrm{W}_{\text {MWFicet }}=1.9 \mathrm{psf} \\
& \mathrm{~W}_{\text {MWFice- }}=-8.2 \mathrm{psf}
\end{aligned}
$$

Lateral Force
$\begin{array}{cc}\text { On Fascia } & 7.9 \mathrm{psf} \\ \text { On Walls } & 7.9 \mathrm{psf}\end{array}$

$$
\begin{aligned}
\mathrm{W}_{\text {iLAT }} & =7.9 \mathrm{psf} \\
\mathrm{~W}_{\text {LAT WALL }} & =7.9 \mathrm{psf}
\end{aligned}
$$

Work Prepared For: StruXure Outdoor of Washington
Project: 22-52551 - Shane McArthur
Calculations For: ASD Loading Combinations per ASCE 7-16, Chapter 2.4
Loading from Rain, Flood, and Additional Design Conditions
Rain Load $\quad 0.0$ psf \quad = 0.0 psf
Static Fluid Load 0.0 psf
$F=0.0$ psf

Flood Risk (2.4.2)
Low
Factor 0
Flood Load 0.0 psf
$F_{a}=0.0 \mathrm{psf}$
Lateral Earth Pressure Load
LatEPr Adds or Resists?
Self-Straining Force
0.0 psf

Adds
0.0 psf
$\mathrm{H}=0.0 \mathrm{psf}$
T = 0.0 psf

Loading from Seismic Forces
Vertical Seismic Load $\quad 0.8 \mathrm{psf} \quad E_{v}=0.8 \mathrm{psf}$

Horizontal Seismic Load
4.7 psf
$\mathrm{E}_{\mathrm{h}}=4.7 \mathrm{psf}$

Allowable Stress Design (ASD) Load Combinations Per ASCE 7-16 Ch 2.4
Critical Design Load Combinations for Components \& Cladding and Main Wind Force Resisting System:

Gravity Components \& Cladding	38.85 psf	EQ \# 3b.	D + S
Uplift Components \& Cladding	-10.00 psf	EQ \# 11 Min.	Min Requirement
Gravity Main Wind Force	38.85 psf	EQ \# 3b.	D + S
Uplift Main Wind Force	-13.50 psf	EQ \# 7 .	$0.6 \mathrm{D}+0.6 \mathrm{~W}$
Lateral Components \& Cladding	15.85 psf	EQ\# 5.	$\mathrm{D}+0.6 \mathrm{~W}$
Lateral Main Wind Force	15.85 psf	EQ\# 5 .	D + 0.6 W

$\begin{aligned} \text { Work Prepared For: } & \text { StruXure Outdoor of Washington } \\ \text { Project: } & 22-52551-\text { Shane McArthur } \\ \text { Calculations For: } & 5.087 \text { "x5.006" } 6063-\text { T6 Standard Aluminum Louver - Louver Blade }\end{aligned}$

ALUMINUM DESIGN MANUAL (2015 EDITION)

Specifications for Aluminum Structures (Buildings)
Allowable Stress Design

Design Check of 5.087"x5.006" 6063-T6 Standard Aluminum Louver

Per 2015 Aluminum Design Manui
Critically
Alloy: 6063 Temper: T6 Welded: N

Member Properties

5.087' ${ }^{\prime} \times 5.006$ ' 6063-T6 Standard Aluminum Louver

Member Spans

$$
\begin{array}{rc}
\text { Unsupported Length (Max Span Between Supports), } L= & 10.0 \mathrm{ft} \\
\text { Unbraced Length For Bending (Against Side-Sway), Lb }= & 10.0 \mathrm{ft} \\
\text { Effective Length Factor, } \mathrm{k}= & 1.0
\end{array}
$$

Material Properties

$$
\begin{array}{rc}
\text { Tensile Ultimate Strength, Ftu }= & 30 \mathrm{ksi} \\
\text { Tensile Yield Strength, Fty }= & 25 \mathrm{ksi} \\
\text { Compressive Yield Strength, Fcy }= & 25 \mathrm{ksi} \\
\text { Shear Ultimate Strength, Fsu }= & 18 \mathrm{ksi} \\
\text { Shear Yield Strength, Fsy }= & 15 \mathrm{ksi} \\
\text { Compressive Modulus Of Elasticity, E }= & 10,100 \mathrm{ksi}
\end{array}
$$

Work Prepared For: StruXure Outdoor of Washington
Project: 22-52551 - Shane McArthur
Calculations For: $\quad 5.087$ 'x5.006' 6063-T6 Standard Aluminum Louver - Louver Blade

Buckling Constants

Compression In Columns \& Beam Flanges (Intercept), $\mathrm{Bc}=$	27.64 k
Compression In Columns \& Beam Flanges (Slope), Dc =	0.14
Compression In Columns \& Beam Flanges (Intersection), Cc =	78.38
Compression In Flat Plates (Intercept), Bp =	31.39
Compression In Flat Plates (Slope), Dp =	0.17
Compression In Flat Plates (Intersection), $\mathrm{Cp}=$	73.55
Compressive Bending Stress In Solid Rectangular Bars (Intercept), $\mathrm{Bbr}=$	46.12
Compressive Bending Stress In Solid Rectangular Bars (Slope), Dbr =	0.38 k
Shear Stress In Flat Plates (Intercept), Bs =	8.9
Shear Stress In Flat Plates (Slope), Ds =	0.08
Shear Stress In Flat Plates (Intersection), Cs =	94.57 k
Ultimate Strength Coefficient Of Flat Plates In Compression, $\mathrm{k} 1 \mathrm{c}=$	0.35
Ultimate Strength Coefficient Of Flat Plates In Compression, k2c =	2.27
Ultimate Strength Coefficient Of Flat Plates In Bending, k1b =	0.50
Ultimate Strength Coefficient Of Flat Plates In Bending, k2b =	2.04
Tension Coefficient, kt	1.0

Member Strength Calculations

D. 2 Axial Tension

Tensile Yielding - Unwelded Members

Fty_n $=$	25.00 ksi
$\Omega=$	1.65
Fty_n $/ \Omega=$	15.15 ksi
Ftu_n $=$	30.00 ksi
$\Omega=$	1.95
Ftu_n $/ \Omega \mathbf{t}=$	
	15.38 ksi

Axial Compression Members

E. 2 Compression Member Buckling

Axial, Gross Section Subject To Buckling

Lower Slenderness Limit, $\lambda 1=$	
Upper Slenderness Limit, $\lambda 2$	$=$
Slenderness, $\lambda(\max)$	$=$
$F 8.38$	
$F c _n=$	
$\Omega=$	7.84 ksi
$\left[0.85 \pi^{2} E / \lambda^{2}\right] \quad$	1.65
$\mathrm{Fc} _\mathbf{n} / \Omega=$	4.75 ksi

Work Prepared For: StruXure Outdoor of Washington
Project: 22-52551 - Shane McArthur
Calculations For: $\quad 5.087$ 'x5.006' 6063-T6 Standard Aluminum Louver - Louver Blade

E. 3 Local Buckling

For Column Elements In Uniform Compression Subject To
Local Buckling, The Uniform Compressive Strength Is
B.5.4.2 - Flat Elements Supported On Both Edges (Base)
B.5.4.2 - Flat Elements Supported On Both Edges (Web)

E. 4 Buckling Interaction

Per Table B.5. 1

$\left[\pi^{2 *} E /(1.6 * b / t b)^{2}\right]$	Fe (flange) $=$	28.92 ksi
[Fc_n]	$F c_{-} n=$	7.84 ksi
Fe (flange) > Fc_n (E. 2 Member Buckling)	$\Omega=$	1.65
	Fc_n/ $\Omega=$	4.75 ksi
$\left[\Pi^{2 *} E /(1.6 * h / t h)^{2}\right]$	Fe (web) $=$	107.59 ksi
[Fc_n]	$F c_{-} n=$	7.84 ksi
	$\Omega=$	1.65
	$\mathbf{F c} \mathbf{-} \mathbf{n} / \Omega=$	4.75 ksi

Flexural Members

F. 2 Yielding And Rupture

Nominal Flexural Strength For Yielding And Rupture Limit State Of Yielding

[1.5*St*Fty]	Mnp =	39.83 k -in
[Mnp/Sx]	Fb_n =	37.50 ksi
	$\Omega=$	1.65
	Fb_n/ $\Omega=$	22.73 ksi
	Of Rupture	
[${ }^{*}$ Ftu/kt]	Mnu =	135.52 k -in
[Mnu/Z]	Fb_n =	30.00 ksi
	$\Omega=$	1.95
	$\mathbf{F b} \mathbf{n} / \Omega=$	15.38 ksi

F. 4 Lateral-Torsional Buckling

Square Or Rectangular Tubes Subject To Lateral-Torsional Buckling

Slenderness For Shapes Symmetric About The Bending Axis, λ F.4.2.1 =
11.81

Slenderness For Closed Shapes, λ F.4.2.3 = 11.91
Slenderness For Any Shape, λ F.4.2.5 = Maximum Slenderness, $\lambda(\max)=11.91$
Nominal Flexural Strength - Lateral-Torsional Buckling

$$
\begin{array}{rrc}
{\left[M n p(1-(N C c))+\left(\pi^{2 *} E^{*} \lambda^{*} S x / C c^{\wedge} 3\right)\right]} & M n m b= & 36.39 \mathrm{k}-\mathrm{in} \\
{[M n m b / S x]} & \mathrm{Fb} _\mathrm{n}= & 34.27 \mathrm{ksi} \\
& \Omega= & 1.65
\end{array}
$$

$\mathbf{F b} _\mathbf{n} / \Omega=\quad 20.77 \mathrm{ksi}$

Work Prepared For: StruXure Outdoor of Washington
Project: 22-52551 - Shane McArthur
Calculations For: $\quad 5.087$ 'x5.006' 6063-T6 Standard Aluminum Louver - Louver Blade
Uniform Compression Elements

B.5.4.2 Flat Elements Supported On Both Edges - Web \& Flange

Uniform Compression Strength, Flat Elements Supported On Both Edges
Lower Slenderness Limit, $\lambda 1=\quad 22.8$
Upper Slenderness Limit, $\lambda 2=39.2$
Flange Slenderness, b/tb = 36.7
Web Slenderness, h/th = 19.02
[Bp-1.6*Dp*b/tb]
Fc_n1 = $\Omega=$
21.11 ksi 1.65

Fc_n1/ $\Omega=\quad 12.80 \mathrm{ksi}$
Fc_n2 = $\quad 25.00 \mathrm{ksi}$
$\Omega=\quad 1.65$
Fc_n2/ $\Omega=\quad 15.15 \mathrm{ksi}$

Flexural Compression Elements

B.5.5.1 Flat Elements Supported On Both Edges - Web

Flexural Compression Strength, Flat Elements Supported On Both Edges
Lower Slenderness Limit, $\lambda 1=34.73$
Upper Slenderness Limit, $\lambda 2=\quad 92.95$
Slenderness, $\mathrm{h} /$ th $=\quad 19.02 \leq \lambda 1$
[1.5*Fcy] Fb_n = 37.50 ksi
$\Omega=\quad 1.65$
$\mathrm{Fb}_{-} \mathbf{n} / \Omega=\quad 22.73 \mathrm{ksi}$
Shear
G. 2 Shear Supported On Both Edges - Web

Members With Flat Elements
Lower Slenderness Limit, $\lambda 1=\quad 38.73$
Supported On Both Edges
Upper Slenderness Limit, $\lambda 2=\quad 75.65$
Slenderness, $\mathrm{h} /$ th $=\quad 19.02 \leq \lambda 1$
[Fsy] Fv_n= 15.00 ksi
$\Omega=\quad 1.65$
Fv_n $/ \Omega=\quad 9.09 \mathrm{ksi}$

CALCULATED ALLOWABLE STRESSES

	Allowable Bending Stress, $\mathrm{F}_{\mathrm{b}}=$ Allowable Axial Stress, Compression, $\mathrm{F}_{\mathrm{ac}}=$ Allowable Shear Stress; Webs, $\mathrm{F}_{\mathrm{v}}=$	$\begin{array}{r} 15.38 \mathrm{ksi} \\ 4.75 \mathrm{ksi} \\ 9.09 \mathrm{ksi} \end{array}$
	Elastic Buckling Stress, $\mathrm{Fe}=$	4.73 ksi
Weighted Average Allowa	pressive Stress (Per Section E.3.1), Fao =	14.39 ksi

\section*{Work Prepared For: StruXure Outdoor of Washington
 Project: 22-52551-Shane McArthur
 Calculations For: $\quad 5.087$ 'x5.006' 6063-T6 Standard Aluminum Louver - Louver Blade Member Loading \& Capacity Calculation Dimensions \& Loading Inputs
 | Layout Style = | Layout \# 1
 Louver |
| :---: | :---: |
| Beam Use = | C\&C |
| Beam Total Length, L = | 10.00 ft |
| \# Spans = | 1 |
| Max Beam Span (Between Supports), I = | 10.00 ft |
| Beam Overhang Left, OhL = | 0.00 ft |
| Beam Overhang Right, OhR = | 0.00 ft |
| Beam Location = | Intermediate |
| Point Load At Left Overhang, PohL = | 0 lb |
| Point Load At Right Overhang, PohR = | 0 lb |
| Point Load \#1 (Left) On Span, P1 = | 0 lb |
| Point Load \#1 Offset, a = | 0.00 ft |
| Point Load \#2 (Right) On Span, P2 = | 0.0 lb |
| Point Load \#2 Offset, b = | 0.00 ft |
| Resultant Weight Loading On Tributary, RL = | 38.9 psf |
| Tributary Width, W = | 0.67 ft |
| Additional Beam Loading (lcing, Service, Ect), AL = | $8.79 \mathrm{lb} / \mathrm{ft}$ |
| Linear Loading On Beam, w = | $34.7 \mathrm{lb} / \mathrm{ft}$ |

Shear In Member And Compression / Tension Reactions At Supports

Max Reaction From Span Point Loads, $V \mathrm{sp}=$	0 lb
Left Reaction From Overhang Point Loads, VopL $=$	0 lb
Right Reaction Right Overhang Point Loads, VopR $=$	0 lb
Max Reaction From Span Weight, Vsw $=$	173 lb
Reaction From Weight Adjustment Factor For Multi-Span, Vwaf $=$	1
Adjusted Reaction From Span \& OH Weight, Vsw' $=$	173 lb
Left Reaction From Overhang Weight, VowL $=$	0 lb
Right Reaction From Overhang Weight, VowR=	0 lb
Max Tension At Supports, Tmax $=$	0 lb
Max Compression At Supports, $\mathbf{C m a x}=$	$\mathbf{0 . 1 7 \mathrm { Kip }}$

Bending Moment Calculations
Moment From Span Point Loads, Msp =
$0 \mathrm{lb}-\mathrm{ft}$
1.000
$0 \mathrm{lb}-\mathrm{ft}$
$0 \mathrm{lb}-\mathrm{ft}$
$0 \mathrm{lb}-\mathrm{ft}$
434 lb-ft
1.00
$434 \mathrm{lb}-\mathrm{ft}$
$0 \mathrm{lb}-\mathrm{ft}$
$0 \mathrm{lb}-\mathrm{ft}$
0.4 Kip-ft
0.0 Kip-ft
0.4 Kip-ft

Work Prepared For: StruXure Outdoor of Washington
Project: 22-52551-Shane McArthur
Calculations For: $\quad 5.087$ "x5.006" 6063-T6 Standard Aluminum Louver - Louver Blade

Deflection Calculations

Deflection From Span Point Loads At $\mathrm{x}, \Delta \mathrm{spx}=\quad 0.00$ in
Location Of Max Moment From Weight Between Spans, $x=\quad 5.00$ in
Deflection From Overhang Point Loads At x, $\Delta \mathrm{opx}=0.00$ in
Deflection From Span \& Overhangs Weight At $\mathrm{x}, \Delta \mathrm{wx}=\quad 0.65$ in
Point Load Deflection At Left Overhang End, Δ owL $=0.00$ in
Point Load Deflection At Right Overhang End, $\Delta \mathrm{opR}=\quad 0.00$ in
Weight Deflection At Left Overhang End, $\Delta \mathrm{owL}=\quad 0.00$ in
Weight Deflection At Right Overhang End, $\Delta \mathrm{opR}=0.00$ in
Span Max Deflection, $\Delta \mathrm{sp}=\quad 0.65$ in
Overhang Max Deflection, $\Delta \mathrm{oh}=\quad 0.00$ in
Total Max Deflection, Δ max $=0.65$ in
Note: Negative Deflection Values Indicate Upward Deflection
Member Capacity Equations
Bending Stress

Capacity Less than 100\% - OK, Member Is Sufficient For Applied Loading

Deflection Check

Deflection Limit $=$	$\mathrm{L} / 80$	
Allowable Deflection, Δ Allow $=$	1.50 in	
Maximum Deflection, $\Delta \mathrm{Max}=$	$\mathbf{0 . 6 5}$ in	
Deflection Capacity $=$	44%	$<100 \%$
OK, Allowable Deflection Sufficient		

Work Prepared For: StruXure Outdoor of Washington
Project: 22-52551 - Shane McArthur
Calculations For: Beam \#1, Single 2"x8"x 0.25'/0.25" 6063-T6 Aluminum Tube - Louver Beam

ALUMINUM DESIGN MANUAL (2015 EDITION)
 Specifications for Aluminum Structures (Buildings)

Allowable Stress Design

Design Check of Standard Single 2"x8"x 0.25"/0.25" 6063-T6 Aluminum Tube Per 2015 Aluminum Design Manui

Critically
Alloy: 6063 Temper: T6 Welded: N

Member Properties

Single 2"x8"x 0.25"/0.25" 6063-T6 Aluminum Tube

\# of Parallel Beams in Section	\# Beams $=$ Base Width, $b=$	1
	$2.000^{\prime \prime}$	

Base Thickness, $\mathrm{tb}=0.250^{\prime \prime}$
Web Height, $\mathrm{h}=8.000^{\prime \prime}$
Web Thickness, th $=0.250^{\prime \prime}$
Moment of Inertia About Axis || To Base, $\mathrm{Ix}=32.599 \mathrm{in}^{\wedge} 4$
Moment of Inertia About Axis || To Web, ly $=3.224$ in^4
Section Modulus About The X-Axis, $S x=8.150 \mathrm{in}^{\wedge} 4$
Radius Of Gyration About Axis || To Base, rx = 2.62 in
Radius Of Gyration About Axis || To Web, ry $=0.82$ in
Torsional Constant, $\mathrm{J}=9.68 \mathrm{in}^{\wedge} 4$
Cross Sectional Area, $\mathrm{A}=4.75 \mathrm{in}^{\wedge} 2$
Plastic Section Modulis, $\mathrm{Z}=10.91 \mathrm{in}^{\wedge} 3$
Warping Constant, $\mathrm{Cw}=0.00 \mathrm{in}^{\wedge} 6$
Member Spans

$$
\begin{array}{rc}
\text { Unsupported Length (Max Span Between Supports), } \mathrm{L}= & 19.5 \mathrm{ft} \\
\text { Unbraced Length For Bending (Against Side-Sway), Lb }= & 2.0 \mathrm{ft} \\
\text { Effective Length Factor, } \mathrm{k}= & 1.0
\end{array}
$$

Material Properties

$$
\begin{array}{rr}
\text { Tensile Ultimate Strength, Ftu }= & 30 \mathrm{ksi} \\
\text { Tensile Yield Strength, Fty }= & 25 \mathrm{ksi} \\
\text { Compressive Yield Strength, Fcy }= & 25 \mathrm{ksi} \\
\text { Shear Ultimate Strength, Fsu }= & 18 \mathrm{ksi} \\
\text { Shear Yield Strength, Fsy }= & 15 \mathrm{ksi} \\
\text { Compressive Modulus Of Elasticity, E }= & 10,100 \mathrm{ksi}
\end{array}
$$

Work Prepared For: StruXure Outdoor of Washington
Project: 22-52551-Shane McArthur
Calculations For: Beam \#1, Single 2"x8"x 0.25"/0.25" 6063-T6 Aluminum Tube - Louver Beam Buckling Constants

Compression In Columns \& Beam Flanges (Intercept), $\mathrm{Bc}=$	27.64 ksi
Compression In Columns \& Beam Flanges (Slope), $\mathrm{Dc}=$	0.14 ksi
Compression In Columns \& Beam Flanges (Intersection), $\mathrm{Cc}=$	78.38 ksi
Compression In Flat Plates (Intercept), $\mathrm{Bp}=$	31.39 ksi
Compression In Flat Plates (Slope), Dp =	0.17 ksi
Compression In Flat Plates (Intersection), $\mathrm{Cp}=$	73.55 ksi
Compressive Bending Stress In Solid Rectangular Bars (Intercept), $\mathrm{Bbr}=$	46.12 ksi
Compressive Bending Stress In Solid Rectangular Bars (Slope), Dbr =	0.38 ksi
Shear Stress In Flat Plates (Intercept), Bs =	18.98 ksi
Shear Stress In Flat Plates (Slope), Ds =	0.08 ksi
Shear Stress In Flat Plates (Intersection), Cs =	94.57 ksi
Ultimate Strength Coefficient Of Flat Plates In Compression, $\mathrm{k} 1 \mathrm{c}=$	0.35
Ultimate Strength Coefficient Of Flat Plates In Compression, k2c =	2.27
Ultimate Strength Coefficient Of Flat Plates In Bending, $\mathrm{k} 1 \mathrm{~b}=$	0.50
Ultimate Strength Coefficient Of Flat Plates In Bending, $\mathrm{k} 2 \mathrm{~b}=$	2.04
Tension Coefficient, kt =	1.0

Member Strength Calculations

D. 2 Axial Tension

Tensile Yielding - Unwelded Members
Fty_n = 25.00 ksi
$\Omega=\quad 1.65$
Fty_n $/ \Omega=\quad 15.15 \mathrm{ksi}$
Tensile Rupture - Unwelded Members

$$
\text { Ftu_n }=\quad 30.00 \mathrm{ksi}
$$

$\Omega=\quad 1.95$
Ftu_n/ $\Omega \mathbf{t}=\quad 15.38 \mathrm{ksi}$

Axial Compression Members

E. 2 Compression Member Buckling

Axial, Gross Section Subject To Buckling

Lower Slenderness Limit, $\lambda 1=$	18.23
Upper Slenderness Limit, $\lambda 2=$	78.38
Slenderness, $\lambda(\max)$	$=$
$F c_{1}=$	89.32
$\left[0.85 \pi^{2} E / \lambda^{2}\right]$	10.62 ksi
$\Omega=$	1.65
$\mathrm{Fc} _\mathbf{n} / \Omega=$	6.44 ksi

Work Prepared For: StruXure Outdoor of Washington
Project: 22-52551 - Shane McArthur
Calculations For: Beam \#1, Single 2"x8"x 0.25"/0.25" 6063-T6 Aluminum Tube - Louver Beam

E. 3 Local Buckling

For Column Elements In Uniform Compression Subject To
Local Buckling, The Uniform Compressive Strength Is
B.5.4.2 - Flat Elements Supported On Both Edges (Base)
B.5.4.2 - Flat Elements Supported On Both Edges (Web)

E. 4 Buckling Interaction

Per Table B.5. 1

$\left[\pi^{2 *} E /(1.6 * b / t b)^{2}\right]$	$F e($ flange $)=$	1081.63 ksi
[Fc_n]	$F c_{-} n=$	10.62 ksi
Fe(flange) > Fc_n (E. 2 Member Buckling)	$\Omega=$	1.65
	Fc_n $/ \Omega=$	6.44 ksi
$\left[\pi^{2 *} E /(1.6 * h / t h)^{2}\right]$	$\mathrm{Fe}(\mathrm{web})=$	43.27 ksi
[Fc_n]	Fc_n $=$	10.62 ksi
	$\Omega=$	1.65
	Fc_n $/ \Omega=$	6.44 ksi

Flexural Members

F. 2 Yielding And Rupture

Nominal Flexural Strength For Yielding And Rupture
Limit State of Yielding

[Z*Fcy] [Mnp/Z]	Mnp =	272.66 k-in
	Fb_n =	25.00 ksi
	$\Omega=$	1.65
	Fb_n $/ \Omega=$	15.15 ksi
Limit State Of Rupture		
[${ }^{*}$ Ftu/kt]	Mnu =	327.19 k -in
[Mnu/Z]	Fb_n =	30.00 ksi
	$\Omega=$	1.95
	$\mathbf{F b} \mathbf{n} / \Omega=$	15.38 ksi

F. 4 Lateral-Torsional Buckling

Square Or Rectangular Tubes Subject To Lateral-Torsional Buckling

Slenderness For Shapes Symmetric About The Bending Axis, 入 F.4.2.1 =
Slenderness For Closed Shapes, λ F.4.2.3 $=$
Slenderness For Any Shape, λ F.4.2.5 = Maximum Slenderness, $\lambda($ max $)=$
Nominal Flexural Strength - Lateral-Torsional Buckling

$$
\begin{array}{rlc}
{\left[M n p(1-(\lambda / C c))+\left(\pi^{2 *} E^{*} \lambda^{*} S x / C c^{\wedge} 3\right)\right]} & M n m b= & 245.53 \mathrm{k}-\mathrm{in} \\
{[M n m b / S x]} & F b _n= & 30.13 \mathrm{ksi} \\
\Omega= & 1.65 \\
\mathrm{Fb} _\mathrm{n} / \Omega= & 18.26 \mathrm{ksi}
\end{array}
$$

Work Prepared For: StruXure Outdoor of Washington
Project: 22-52551 - Shane McArthur
Calculations For: Beam \#1, Single 2"x8"x 0.25'/0.25" 6063-T6 Aluminum Tube - Louver Beam
Uniform Compression Elements

B.5.4.2 Flat Elements Supported On Both Edges - Web \& Flange

Uniform Compression Strength, Flat Elements Supported On Both Edges
Lower Slenderness Limit, $\lambda 1=\quad 22.8$
Upper Slenderness Limit, $\lambda 2=39.2$
Flange Slenderness, $\mathrm{b} / \mathrm{tb}=\quad 6.0 \leq \lambda 1$
Web Slenderness, h/th $=30.0 \quad \lambda 1-\lambda 2$
[Fcy] Fc_n1 = $\Omega=$
25.00 ksi
1.65

Fc_n1/ $\Omega=\quad 15.15 \mathrm{ksi}$
[Bp-1.6*Dp*h/th]
Fc_n2 = $\quad 22.99 \mathrm{ksi}$
$\Omega=\quad 1.65$
Fc_n2/ $\Omega=\quad 13.93 \mathrm{ksi}$

Flexural Compression Elements

B.5.5.1 Flat Elements Supported On Both Edges - Web

Flexural Compression Strength, Flat Elements Supported On Both Edges
Lower Slenderness Limit, $\lambda 1=\quad 34.73$

Upper Slenderness Limit, $\lambda 2=\quad 92.95$
Slenderness, $\mathrm{h} /$ th $=\quad 30.00 \leq \lambda 1$
[1.5*Fcy] Fb_n = 37.50 ksi
$\Omega=\quad 1.65$
$\mathrm{Fb}_{-} \mathbf{n} / \Omega=\quad 22.73 \mathrm{ksi}$
Shear
G. 2 Shear Supported On Both Edges - Web

Members With Flat Elements
Lower Slenderness Limit, $\lambda 1=\quad 38.73$
Supported On Both Edges
Upper Slenderness Limit, $\lambda 2=\quad 75.65$
Slenderness, $\mathrm{h} /$ th $=\quad 30.00 \leq \lambda 1$
[Fsy] Fv_n= 15.00 ksi
$\Omega=\quad 1.65$
Fv_n $/ \Omega=\quad 9.09 \mathrm{ksi}$

CALCULATED ALLOWABLE STRESSES

| 4 | |
| ---: | ---: | ---: |
| Allowable Bending Stress, $F_{\mathrm{b}}=$ | 15.15 ksi |
| 6.44 ksi | |
| Allowable Axial Stress, Compression, $\mathrm{F}_{\mathrm{ac}}=$ | 9.09 ksi |
| Allowable Shear Stress; Webs, $\mathrm{F}_{\mathrm{v}}=$ | |
| Elastic Buckling Stress, Fe $=$ | 6.41 ksi |
| 14.14 ksi | |

Work Prepared For: StruXure Outdoor of Washington
Project: 22-52551 - Shane McArthur
Calculations For: Beam \#1, Single 2"x8"x 0.25"/0.25" 6063-T6 Aluminum Tube - Louver Beam Member Loading \& Capacity Calculation Dimensions \& Loading Inputs

Shear In Member And Compression / Tension Reactions At Supports

Max Reaction From Span Point Loads, Vsp $=\quad 0 \mathrm{lb}$
Left Reaction From Overhang Point Loads, VopL = 0 lb
Right Reaction Right Overhang Point Loads, VopR = 0 lb
Max Reaction From Span Weight, Vsw= 2099 lb Reaction From Weight Adjustment Factor For Multi-Span, Vwaf = 1 Adjusted Reaction From Span Weight, Vsw'= 2099 lb
Left Reaction From Overhang Weight, VowL= 0 lb
Right Reaction From Overhang Weight, VowR= 0 lb
Max Tension At Supports, Tmax $=\quad \mathbf{0 . 0 0} \mathbf{K i p}$
Max Compression At Supports, $\mathbf{C m a x}=\quad$ 2.10 Kip

Bending Moment Calculations
Moment From Span Point Loads, Msp =
0 lb-ft
Moment From Point Loads Adjustment Factor For Multi-Span, Mpaf = 1.000
Adjusted Moment From Span Point Loads, Msp' = 0 lb-ft
Moment From Left Overhang Point Loads, MohpL = $0 \mathrm{lb}-\mathrm{ft}$
Moment From Right Overhang Point Loads, MohpR = $0 \mathrm{lb}-\mathrm{ft}$
Moment From Span Weight, Mw= 10231 lb-ft
1.00
$10231 \mathrm{lb}-\mathrm{ft}$
$0 \mathrm{lb}-\mathrm{ft}$
$0 \mathrm{lb}-\mathrm{ft}$
10.2 Kip-ft
0.0 Kip-ft
10.2 Kip-ft

Work Prepared For: StruXure Outdoor of Washington
Project: 22-52551-Shane McArthur
Calculations For: Beam \#1, Single 2"x8"x 0.25"/0.25" 6063-T6 Aluminum Tube - Louver Beam

Deflection Calculations

Deflection From Span Point Loads At $\mathrm{x}, \Delta \mathrm{spx}=\quad 0.00$ in
Location Of Max Moment From Weight Between Spans, $x=\quad 9.75$ in
Deflection From Overhang Point Loads At x, $\Delta \mathrm{opx}=0.00$ in
Deflection From Span \& Overhangs Weight At $\mathrm{x}, \Delta \mathrm{wx}=\quad 2.13$ in
Point Load Deflection At Left Overhang End, $\Delta \mathrm{owL}=\quad 0.00$ in
Point Load Deflection At Right Overhang End, $\Delta \mathrm{opR}=\quad 0.00$ in
Weight Deflection At Left Overhang End, $\Delta \mathrm{owL}=\quad 0.00$ in
Weight Deflection At Right Overhang End, $\Delta \mathrm{opR}=\quad 0.00$ in
Span Max Deflection, $\Delta \mathrm{sp}=\quad 2.13$ in
Overhang Max Deflection, $\Delta \mathrm{oh}=\quad 0.00$ in
Total Max Deflection, Δ max $=\quad 2.13$ in
Note: Negative Deflection Values Indicate Upward Deflection

Member Capacity Equations Bending Stress

Capacity Less than 100\% - OK, Member Is Sufficient For Applied Loading

Deflection Check

Deflection Limit $=$	$\mathrm{L} / 80$	
Allowable Deflection, Δ Allow $=$	2.93 in	
Maximum Deflection, Δ Max $=$	$\mathbf{2 . 1 3}$ in	
Deflection Capacity $=$	73%	$<100 \%$
OK, Allowable Deflection Sufficient		

Work Prepared For: StruXure Outdoor of Washington
Project: 22-52551 - Shane McArthur
Calculations For: Beam \#2, Single 2"x8"x 0.25"/0.25" 6063-T6 Aluminum Tube - Main Beam

ALUMINUM DESIGN MANUAL (2015 EDITION)
 Specifications for Aluminum Structures (Buildings)

Allowable Stress Design
$\frac{\text { Design Check of Standard Single 2" } \times 8 \text { " } \times 0.25 \text { " } / 0.25 \text { " 6063-T6 Aluminum Tube }}{\text { Per } 2015 \text { Aluminum Design Manui }}$
Critically
Alloy: 6063 Temper: T6 Welded: N

Member Properties

Single 2"x8"x 0.25"/0.25" 6063-T6 Aluminum Tube
\# of Parallel Beams in Section \quad \# Beams $=1$

Base Width, $b=2.000^{\prime \prime}$
Base Thickness, $\mathrm{tb}=0.250^{\prime \prime}$
Web Height, $\mathrm{h}=8.000^{\prime \prime}$
Web Thickness, th $=0.250^{\prime \prime}$
Moment of Inertia About Axis || To Base, Ix = 32.599 in^4
Moment of Inertia About Axis || To Web, ly $=3.224$ in^4
Section Modulus About The X-Axis, $\mathrm{Sx}=8.150 \mathrm{in}^{\wedge} 4$
Radius Of Gyration About Axis || To Base, rx = 2.62 in
Radius Of Gyration About Axis || To Web, ry $=0.82$ in
Torsional Constant, $\mathrm{J}=9.68 \mathrm{in}^{\wedge} 4$
Cross Sectional Area, $\mathrm{A}=4.75 \mathrm{in}^{\wedge} 2$
Plastic Section Modulis, $\mathrm{Z}=10.91 \mathrm{in}^{\wedge} 3$
Warping Constant, $\mathrm{Cw}=0.00 \mathrm{in}^{\wedge} 6$

Member Spans

$$
\begin{array}{rc}
\text { Unsupported Length (Max Span Between Supports), } \mathrm{L}= & 10.0 \mathrm{ft} \\
\text { Unbraced Length For Bending (Against Side-Sway), Lb }= & 10.0 \mathrm{ft} \\
\text { Effective Length Factor, } \mathrm{k}= & 1.0
\end{array}
$$

Material Properties

$$
\begin{array}{rr}
\text { Tensile Ultimate Strength, Ftu }= & 30 \mathrm{ksi} \\
\text { Tensile Yield Strength, Fty }= & 25 \mathrm{ksi} \\
\text { Compressive Yield Strength, Fcy }= & 25 \mathrm{ksi} \\
\text { Shear Ultimate Strength, Fsu }= & 18 \mathrm{ksi} \\
\text { Shear Yield Strength, Fsy }= & 15 \mathrm{ksi} \\
\text { Compressive Modulus Of Elasticity, E }= & 10,100 \mathrm{ksi}
\end{array}
$$

Work Prepared For: StruXure Outdoor of Washington
Project: 22-52551-Shane McArthur
Calculations For: Beam \#2, Single 2"x8"x 0.25"/0.25" 6063-T6 Aluminum Tube - Main Beam Buckling Constants

Compression In Columns \& Beam Flanges (Intercept), $\mathrm{Bc}=$	27.64 ksi
Compression In Columns \& Beam Flanges (Slope), $\mathrm{Dc}=$	0.14 ksi
Compression In Columns \& Beam Flanges (Intersection), $\mathrm{Cc}=$	78.38 ksi
Compression In Flat Plates (Intercept), $\mathrm{Bp}=$	31.39 ksi
Compression In Flat Plates (Slope), Dp =	0.17 ksi
Compression In Flat Plates (Intersection), $\mathrm{Cp}=$	73.55 ksi
Compressive Bending Stress In Solid Rectangular Bars (Intercept), $\mathrm{Bbr}=$	46.12 ksi
Compressive Bending Stress In Solid Rectangular Bars (Slope), Dbr =	0.38 ksi
Shear Stress In Flat Plates (Intercept), Bs =	18.98 ksi
Shear Stress In Flat Plates (Slope), Ds =	0.08 ksi
Shear Stress In Flat Plates (Intersection), Cs =	94.57 ksi
Ultimate Strength Coefficient Of Flat Plates In Compression, $\mathrm{k} 1 \mathrm{c}=$	0.35
Ultimate Strength Coefficient Of Flat Plates In Compression, k2c =	2.27
Ultimate Strength Coefficient Of Flat Plates In Bending, $\mathrm{k} 1 \mathrm{~b}=$	0.50
Ultimate Strength Coefficient Of Flat Plates In Bending, $\mathrm{k} 2 \mathrm{~b}=$	2.04
Tension Coefficient, kt =	1.0

Member Strength Calculations

D. 2 Axial Tension

Tensile Yielding - Unwelded Members
Fty_n = 25.00 ksi
$\Omega=\quad 1.65$
Fty_n $/ \Omega=\quad 15.15 \mathrm{ksi}$
Tensile Rupture - Unwelded Members

$$
\text { Ftu_n }=\quad 30.00 \mathrm{ksi}
$$

$\Omega=\quad 1.95$
Ftu_n/ $\Omega \mathbf{t}=\quad 15.38 \mathrm{ksi}$

Axial Compression Members

E. 2 Compression Member Buckling

Axial, Gross Section Subject To Buckling

Lower Slenderness Limit, $\lambda 1=$Upper Slenderness Limit, $\lambda 2=$		18.23
		78.38
Slenderness, λ (max) $=$		145.66
$\left[0.85 \pi^{2} E / \lambda^{2}\right]$	$F c_{-} n=$	3.99 ksi
	$\Omega=$	1.65
	Fc_n/ $\Omega=$	2.42 ksi

Work Prepared For: StruXure Outdoor of Washington
Project: 22-52551-Shane McArthur
Calculations For: Beam \#2, Single 2"x8"x 0.25"/0.25" 6063-T6 Aluminum Tube - Main Beam
E. 3 Local Buckling

For Column Elements In Uniform Compression Subject To
Local Buckling, The Uniform Compressive Strength Is
B.5.4.2 - Flat Elements Supported On Both Edges (Base)
B.5.4.2 - Flat Elements Supported On Both Edges (Web)

E. 4 Buckling Interaction

Per Table B.5. 1

$\left[\pi^{2 *} E /(1.6 * b / t b)^{2}\right]$	$F e($ flange $)=$	1081.63 ksi
[Fc_n]	$F c_{-} n=$	3.99 ksi
Fe(flange) > Fc_n (E. 2 Member Buckling)	$\Omega=$	1.65
	Fc_n $/ \Omega=$	2.42 ksi
$\left[\pi^{2 *} E /(1.6 * h / t h)^{2}\right]$	$\mathrm{Fe}(\mathrm{web})=$	43.27 ksi
[Fc_n]	$F c_{-} n=$	3.99 ksi
	$\Omega=$	1.65
	Fc_n $/ \Omega=$	2.42 ksi

Flexural Members

F. 2 Yielding And Rupture

Nominal Flexural Strength For Yielding And Rupture

Limit State of Yielding

[${ }^{*}$ Fcy]	Mnp =	272.66 k-in
[Mnp/Z]	Fb_n =	25.00 ksi
	$\Omega=$	1.65
	Fb_n/ $\Omega=$	15.15 ksi
Limit State Of Rupture		
[${ }^{*}$ Ftu/kt]	$\mathrm{Mnu}=$	327.19 k -in
[Mnu/Z]	Fb_n =	30.00 ksi
	$\Omega=$	1.95
	Fb_n/ $\Omega=$	15.38 k

F. 4 Lateral-Torsional Buckling

Square Or Rectangular Tubes Subject To Lateral-Torsional Buckling Slenderness For Shapes Symmetric About The Bending Axis, 入 F.4.2.1 = 30.71

Slenderness For Closed Shapes, λ F.4.2.3 $=30.43$
Slenderness For Any Shape, λ F.4.2.5 $=30.71$
Maximum Slenderness, $\lambda(\max)=30.71$ <Cc
Nominal Flexural Strength - Lateral-Torsional Buckling

$$
\begin{array}{rrcc}
{\left[M n p(1-(N / C c))+\left(\pi^{2 *} E^{*} \wedge^{*} S x / C c^{\wedge} 3\right)\right]} & M n m b= & 217.63 \mathrm{k}-\mathrm{in} \\
{[M n m b / S x]} & \mathrm{Fb} n= & 26.70 \mathrm{ksi} \\
& \Omega= & 1.65 \\
& \text { Fb_n } / \Omega= & 16.18 \mathrm{ksi}
\end{array}
$$

Work Prepared For: StruXure Outdoor of Washington
Project: 22-52551 - Shane McArthur
Calculations For: Beam \#2, Single 2"x8"x 0.25'/0.25" 6063-T6 Aluminum Tube - Main Beam
Uniform Compression Elements

B.5.4.2 Flat Elements Supported On Both Edges - Web \& Flange

Uniform Compression Strength, Flat Elements Supported On Both Edges
Lower Slenderness Limit, $\lambda 1=\quad 22.8$
Upper Slenderness Limit, $\lambda 2=39.2$
Flange Slenderness, $\mathrm{b} / \mathrm{tb}=\quad 6.0 \leq \lambda 1$
Web Slenderness, h/th $=30.0 \quad \lambda 1-\lambda 2$
[Fcy] Fc_n1 = $\Omega=$
25.00 ksi
1.65

Fc_n1/ $\Omega=\quad 15.15 \mathrm{ksi}$
[Bp-1.6*Dp*h/th]
Fc_n2 = $\quad 22.99 \mathrm{ksi}$
$\Omega=\quad 1.65$
Fc_n2/ $\Omega=\quad 13.93 \mathrm{ksi}$

Flexural Compression Elements

B.5.5.1 Flat Elements Supported On Both Edges - Web

Flexural Compression Strength, Flat Elements Supported On Both Edges
Lower Slenderness Limit, $\lambda 1=34.73$

Upper Slenderness Limit, $\lambda 2=\quad 92.95$
Slenderness, $\mathrm{h} /$ th $=\quad 30.00 \leq \lambda 1$
[1.5*Fcy] Fb_n = 37.50 ksi
$\Omega=\quad 1.65$
Fb_n $/ \Omega=\quad 22.73 \mathrm{ksi}$
Shear
G. 2 Shear Supported On Both Edges - Web

Members With Flat Elements
Lower Slenderness Limit, $\lambda 1=\quad 38.73$
Supported On Both Edges
Upper Slenderness Limit, $\lambda 2=\quad 75.65$
Slenderness, $\mathrm{h} /$ th $=\quad 30.00 \leq \lambda 1$
[Fsy] Fv_n= 15.00 ksi
$\Omega=\quad 1.65$
Fv_n $/ \Omega=\quad 9.09 \mathrm{ksi}$

CALCULATED ALLOWABLE STRESSES

| 4 | |
| ---: | ---: | ---: |
| Allowable Bending Stress, $F_{b}=$ | 15.15 ksi |
| 2.42 ksi | |
| Allowable Axial Stress, Compression, $\mathrm{F}_{\mathrm{ac}}=$ | 9.09 ksi |
| Allowable Shear Stress; Webs, $\mathrm{F}_{\mathrm{v}}=$ | |
| Elastic Buckling Stress, Fe $=$ | 2.41 ksi |
| Weighted Average Allowable Compressive Stress (Per Section E.3.1), Fao $=$ | 14.14 ksi |

Work Prepared For: StruXure Outdoor of Washington
Project: 22-52551 - Shane McArthur
Calculations For: Beam \#2, Single 2"x8"x 0.25"/0.25" 6063-T6 Aluminum Tube - Main Beam Member Loading \& Capacity Calculation Dimensions \& Loading Inputs

Shear In Member And Compression / Tension Reactions At Supports

Max Reaction From Span Point Loads, $\mathrm{Vsp}=0 \quad 0 \mathrm{lb}$
Left Reaction From Overhang Point Loads, VopL = 2099 lb
Right Reaction Right Overhang Point Loads, VopR = 2099 lb
Max Reaction From Span Weight, Vsw= 50 lb
Reaction From Weight Adjustment Factor For Multi-Span, Vwaf = 1.25
Adjusted Reaction From Span Weight, Vsw'= 63 lb
Left Reaction From Overhang Weight, VowL= 0 lb
Right Reaction From Overhang Weight, VowR= 0 lb
Max Tension At Supports, Tmax $=\quad 0.00 \mathbf{K i p}$
Max Compression At Supports, Cmax = 2.16 Kip

Bending Moment Calculations
Moment From Span Point Loads, Msp = 0 lb-ft
Moment From Point Loads Adjustment Factor For Multi-Span, Mpaf = 1.156
Adjusted Moment From Span Point Loads, Msp' = 0 lb-ft
Moment From Left Overhang Point Loads, MohpL = $0 \mathrm{lb}-\mathrm{ft}$
Moment From Right Overhang Point Loads, MohpR = $0 \mathrm{lb}-\mathrm{ft}$
Moment From Span Weight, Mw= 125 lb-ft
1.07
$134 \mathrm{lb}-\mathrm{ft}$
$0 \mathrm{lb}-\mathrm{ft}$
Moment From Left Overhang Weight, MohwL =
$0 \mathrm{lb}-\mathrm{ft}$
0.1 Kip-ft
0.0 Kip-ft
0.1 Kip-ft

Work Prepared For: StruXure Outdoor of Washington
Project: 22-52551-Shane McArthur
Calculations For: Beam \#2, Single 2"x8"x 0.25"/0.25" 6063-T6 Aluminum Tube - Main Beam

Deflection Calculations

Deflection From Span Point Loads At $\mathrm{x}, \Delta \mathrm{spx}=\quad 0.00$ in
Location Of Max Moment From Weight Between Spans, $x=\quad 5.00$ in
Deflection From Overhang Point Loads At $\mathrm{x}, \Delta \mathrm{opx}=0.00$ in
Deflection From Span \& Overhangs Weight At $\mathrm{x}, \Delta \mathrm{wx}=\quad 0.01$ in
Point Load Deflection At Left Overhang End, $\Delta \mathrm{owL}=\quad 0.00$ in
Point Load Deflection At Right Overhang End, $\Delta \mathrm{opR}=\quad 0.00$ in
Weight Deflection At Left Overhang End, $\Delta \mathrm{owL}=\quad 0.00$ in
Weight Deflection At Right Overhang End, $\Delta \mathrm{opR}=\quad 0.00$ in
Span Max Deflection, $\Delta \mathrm{sp}=\quad 0.01$ in
Overhang Max Deflection, $\Delta \mathrm{oh}=\quad 0.00$ in
Total Max Deflection, Δ max $=0.01$ in
Note: Negative Deflection Values Indicate Upward Deflection

Member Capacity Equations

Bending Stress

Capacity Less than 100\% - OK, Member Is Sufficient For Applied Loading

Deflection Check

Deflection Limit $=$	$\mathrm{L} / 80$	
Allowable Deflection, Δ Allow $=$	1.50 in	
Maximum Deflection, $\Delta \mathrm{Max}=$	$\mathbf{0 . 0 1}$ in	
Deflection Capacity $=$	0%	$<100 \%$
OK, Allowable Deflection Sufficient		

Work Prepared For: StruXure Outdoor of Washington
Project: 22-52551 - Shane McArthur
Calculations For: Post \#1, Single 8" x 8" x 0.1875" / 0.1875" 6063-T6 Aluminum Tube - Post

ALUMINUM DESIGN MANUAL (2015 EDITION)

Specifications for Aluminum Structures (Buildings)
Allowable Stress Design

Design Check of Standard Single 8"x8"x 0.1875"/0.1875" 6063-T6 Aluminum Tube As Post

Per 2015 Aluminum Design Manui

Critically
Welded: N
N

Member Properties
Alloy: 6063 Temper: T6

Single 8" x 8" x 0.187
\# of Parallel Beams in Section
\# Beams =

$$
\text { Base Width, } b=
$$

$$
\text { Base Thickness, tb }=0.188^{\prime \prime}
$$

$$
\text { Web Height, } \mathrm{h}=\quad 8.000^{\prime \prime}
$$

$$
\text { Web Thickness, th }=\quad 0.188 "
$$

Moment of Inertia About Axis || To Base, Ix = $59.639 \mathrm{in}^{\wedge} 4$
Moment of Inertia About Axis || To Web, ly $=59.639$ in^4
Section Modulus About The X-Axis, $\mathrm{Sx}=14.910 \mathrm{in} \wedge 4$
Radius Of Gyration About Axis || To Base, rx = 3.19 in
Radius Of Gyration About Axis || To Web, ry = 3.19 in
Torsional Constant, $J=89.41 \mathrm{in}^{\wedge} 4$
Cross Sectional Area, $A=\quad 5.86 \mathrm{in}^{\wedge} 2$
Plastic Section Modulis, $Z=17.17 \mathrm{in}^{\wedge} 3$
Warping Constant, $\mathrm{Cw}=0.00 \mathrm{in}^{\wedge} 6$

Member Spans

Unsupported Length (Max Span Between Supports), L = 11.0 ft
Unbraced Length For Bending (Against X-Side-Sway), Lbx = 11.0 ft
Unbraced Length For Bending (Against Y-Side-Sway), Lby = $\quad 11.0 \mathrm{ft}$
Effective Length Factor (X Direction), $k x=2.0$
Effective Length Factor (Y Direction), $\mathrm{ky}=\quad 1.0$

Material Properties

$$
\begin{array}{rr}
\text { Tensile Ultimate Strength, Ftu }= & 30 \mathrm{ksi} \\
\text { Tensile Yield Strength, Fty }= & 25 \mathrm{ksi} \\
\text { Compressive Yield Strength, Fcy }= & 25 \mathrm{ksi} \\
\text { Shear Ultimate Strength, Fsu }= & 18 \mathrm{ksi} \\
\text { Shear Yield Strength, Fsy }= & 15 \mathrm{ksi} \\
\text { Compressive Modulus Of Elasticity, E }= & 10,100 \mathrm{ksi}
\end{array}
$$

Work Prepared For: StruXure Outdoor of Washington
Project: 22-52551-Shane McArthur
Calculations For: Post \#1, Single 8" x 8" x 0.1875" / 0.1875" 6063-T6 Aluminum Tube - Post Buckling Constants

Compression In Columns \& Beam Flanges (Intercept), $\mathrm{Bc}=$ Compression In Columns \& Beam Flanges (Slope), $\mathrm{Dc}=$	$\begin{gathered} 27.64 \mathrm{ksi} \\ 0.14 \mathrm{ksi} \end{gathered}$
Compression In Columns \& Beam Flanges (Intersection), Cc =	78.38 ksi
Compression In Flat Plates (Intercept), $\mathrm{Bp}=$	31.39 ksi
Compression In Flat Plates (Slope), Dp =	0.17 ksi
Compression In Flat Plates (Intersection), $\mathrm{Cp}=$	73.55 ksi
Compressive Bending Stress In Solid Rectangular Bars (Intercept), Bbr =	46.12 ksi
Compressive Bending Stress In Solid Rectangular Bars (Slope), Dbr =	0.38 ksi
Shear Stress In Flat Plates (Intercept), Bs =	18.98 ksi
Shear Stress In Flat Plates (Slope), Ds =	0.08 ksi
Shear Stress In Flat Plates (Intersection), Cs =	94.57 ksi
Ultimate Strength Coefficient Of Flat Plates In Compression, k1c =	0.35
Ultimate Strength Coefficient Of Flat Plates In Compression, k2c =	2.27
Ultimate Strength Coefficient Of Flat Plates In Bending, k1b =	0.50
Ultimate Strength Coefficient Of Flat Plates In Bending, $\mathrm{k} 2 \mathrm{~b}=$	2.04
Tension Coefficient, kt =	1.0

Member Strength Calculations

D. 2 Axial Tension

Tensile Yielding - Unwelded Members

Fty_n $=$	25.00 ksi
$\Omega=$	1.65
Fty_n $/ \Omega=$	15.15 ksi
Ftu_n $=$	30.00 ksi
$\Omega=$	1.95
Ftu_n $/ \Omega \mathbf{t}=$	
	15.38 ksi

Axial Compression Members

E. 2 Compression Member Buckling

Axial, Gross Section Subject To Buckling

Lower Slenderness Limit, $\lambda 1=$	18.23
Upper Slenderness Limit, $\lambda 2=$	78.38
Slenderness, $\lambda(\max)=$	82.75
$F c_{1} n=$	12.37 ksi
$\left[0.85 \pi^{2} E / \lambda^{2}\right]$	1.65
$\mathrm{Fc} _\mathbf{n} / \Omega=$	7.50 ksi

Work Prepared For: StruXure Outdoor of Washington
Project: 22-52551 - Shane McArthur
Calculations For: Post \#1, Single 8" x 8" x 0.1875" / 0.1875" 6063-T6 Aluminum Tube - Post

E. 3 Local Buckling

For Column Elements In Uniform Compression Subject To
Local Buckling, The Uniform Compressive Strength Is
B.5.4.2 - Flat Elements Supported On Both Edges (Base)
B.5.4.2 - Flat Elements Supported On Both Edges (Web)

E. 4 Buckling Interaction

Per Table B.5.1

$\begin{array}{r} {\left[\pi^{2 *} E /\left(1.6^{*} b / t b\right)^{2}\right]} \\ {\left[F c_{-} n\right]} \end{array}$	$\begin{array}{r} \text { Fe(flange) }= \\ F c_{_} n= \end{array}$	$\begin{gathered} 23.55 \mathrm{ksi} \\ 12.37 \mathrm{ksi} \end{gathered}$
Fe(flange) > Fc_n (E. 2 Member Buckling)	$\Omega=$	1.65
	Fc_n/ $\Omega=$	7.50 ksi
[$\left.\Pi^{2 *} E /(1.6 * h / t h)^{2}\right]$	$F e(w e b)=$	23.55 ksi
[Fc_n]	$F c_{-} n=$	12.37 ksi
	$\Omega=$	1.65
	Fc_n/ $\Omega=$	7.50 ksi

Flexural Members

F. 2 Yielding And Rupture

Nominal Flexural Strength For Yielding And Rupture

Limit State of Yielding		
[Z*Fcy]	Mnp =	429.24 k-in
[Mnp/Z]	Fb_n =	25.00 ksi
	$\Omega=$	1.65
	Fb_n/ $\Omega=$	15.15 ksi
Limit State Of Rupture		
[${ }^{*}$ Ftu/kt]	Mnu =	515.08 k-in
[Mnu/Z]	Fb_n =	30.00 ksi
	$\Omega=$	1.95
	Fb_n/ $\Omega=$	15.38 ksi

F. 4 Lateral-Torsional Buckling

Square Or Rectangular Tubes Subject To Lateral-Torsional Buckling
Slenderness For Shapes Symmetric About The Bending Axis, λ F.4.2.1 = 12.14
Slenderness For Closed Shapes, λ F.4.2.3 $=11.94$
Slenderness For Any Shape, λ F.4.2.5 $=12.14$
Maximum Slenderness, $\lambda(\max)=12.14 \quad<\mathrm{Cc}$
Nominal Flexural Strength - Lateral-Torsional Buckling
$\left[M n p(1-(\lambda / C c))+\left(\pi^{2 *} E^{*} \lambda^{*} S x / C c^{\wedge} 3\right)\right]$

Mnmb $=$	
Fb_n $=$	$260.23 \mathrm{k}-\mathrm{in}$
$\Omega=$	1.65
Fb_n $/ \Omega=$	16.27 ksi

Work Prepared For: StruXure Outdoor of Washington
Project: 22-52551 - Shane McArthur
Calculations For: Post \#1, Single 8" x 8" x 0.1875" / 0.1875" 6063-T6 Aluminum Tube - Post
Uniform Compression Elements

B.5.4.2 Flat Elements Supported On Both Edges - Web \& Flange

Uniform Compression Strength, Flat Elements Supported On Both Edges
Lower Slenderness Limit, $\lambda 1=\quad 22.8$
Upper Slenderness Limit, $\lambda 2=39.2$
Flange Slenderness, $\mathrm{b} / \mathrm{tb}=\quad 40.67 \geq \lambda 2$
Web Slenderness, $\mathrm{h} /$ th $=\quad 40.67 \geq \lambda 2$
$\left[k 2 c^{*} \sqrt{ }\left(B p^{*} E\right) /\left(1.6^{*} b / t b\right)\right] \quad F c _n 1=\quad 19.64 \mathrm{ksi}$
$\Omega=\quad 1.65$
Fc_n1/ $\Omega=\quad 11.90 \mathrm{ksi}$
$\left[k 2 c^{*} \sqrt{ }\left(B p^{*} E\right) /\left(1.6^{*} h / t h\right)\right]$
Fc_n2 = $\quad 19.64 \mathrm{ksi}$
$\Omega=\quad 1.65$
Fc_n2/ $\Omega=\quad 11.90$ ksi

Flexural Compression Elements

B.5.5.1 Flat Elements Supported On Both Edges - Web

Flexural Compression Strength, Flat Elements Supported On Both Edges
Lower Slenderness Limit, $\lambda 1=34.73$
Upper Slenderness Limit, $\lambda 2=\quad 92.95$
Slenderness, $\mathrm{h} /$ th $=\quad 40.67$
$\lambda 1-\lambda 2$
[Bbr-m*Dbr*h/th]

Fb_n	$=$		36.03 ksi
Ω	$=$		1.65
Fb_n $/ \Omega$	$=$		21.83 ksi

Shear
G. 2 Shear Supported On Both Edges - Web

Members With Flat Elements
Supported On Both Edges

Lower Slenderness Limit, $\lambda 1=$
38.73

Upper Slenderness Limit, $\lambda 2=75.65$
Slenderness, $\mathrm{h} /$ th $=\quad 40.67$
$\lambda 1-\lambda 2$
[Bs-1.25Ds*h/th]

CALCULATED ALLOWABLE STRESSES

	Allowable Bending Stress, $\mathrm{F}_{\mathrm{b}}=$ Allowable Axial Stress, Compression, $\mathrm{F}_{\mathrm{ac}}=$ Allowable Shear Stress; Webs, $\mathrm{F}_{\mathrm{v}}=$ Allowable Axial Stress, Tension, $\mathrm{F}_{\mathrm{at}}=$	14.24 ksi 7.50 ksi 8.97 ksi 15.15 ksi
	Elastic Buckling Stress, $\mathrm{Fe}=$ ressive Stress (Per Section E.3.1), Fao =	$\begin{gathered} 7.47 \mathrm{ksi} \\ 11.90 \mathrm{ksi} \end{gathered}$

Work Prepared For:	StruXure Outdoor of Washington
Project:	$22-52551-$ Shane McArthur
Calculations For:	Post \#1, Single 8" $\times 8$ " $\times \mathbf{0 . 1 8 7 5 " ~ / ~ 0 . 1 8 7 5 " ~ 6 0 6 3 - T 6 ~ A l u m i n u m ~ T u b e ~ - ~ P o s t ~}$

Bending Moment Calculations

Max Y - Moment (At Base) (Bending Towards Host), My = 160 lb -ft Max X - Moment (At Base) (Bending || To Host), Mx = $1802 \mathrm{lb-ft}$
X - Moment Reduction for Stiffness of Host Attached Members, $\mathrm{M}_{\mathrm{X} \text {-Red }} \quad 15 \%$
Reduced X - Bending Moment, Mx' = 1531 lb -ft
Absolute Max Moment, Mmax = \quad 4.1 Kip-ft

Deflection Calculations

Deflection in X - Direction, $\Delta \mathrm{x}=$	0.00 in
Deflection in Y - Direction, $\Delta \mathrm{y}=$	0.19 in
Max Deflection, $\Delta \max =$	$\mathbf{0 . 1 9} \mathbf{~ i n}$

Member Capacity Equations

Bending Stress

Bending Moment Developed In Member, Mz =
Bending Stress Developed In Member, fb =
Allowable Bending Stress Of Member, Allowable Bending Stress, Fb =
Bending Moment Capacity =
4.1 Kip-ft
3.33 ksi
14.24 ksi

23\% < 100\%

Axial Stress

Compressive Stress

Tensile Stress

Shear Stress
Compression Load Developed In Member, Fc = Compression Stress Developed In Member, fac = Allowable Axial Stress, Compression, Fac = Compressive Stress Capacity =

Tension Load Developed In Member, $\mathrm{F}_{\mathrm{T}}=$
Tension Stress Developed In Member, fat =
Allowable Axial Stress, Tension, Fat =
Tensile Stress Capacity =

3.79 Kip	
0.65 ksi	
7.50 ksi	
9%	$<100 \%$

-1.32 Kip
0.05 ksi
15.15 ksi
$0 \%<100 \%$

Shear Load Developed In Member, Vz =
Shear Stress Developed In Member, fv =
0.54 Kip
0.19 ksi

Allowable Shear Stress Of Member Webs, Fv = 8.97 ksi
2\% < 100\%

Interaction Equations

Reduced Bending And Shear Interaction
Axial And Bending Interaction
Axial With Reduced Bending And Shear Interaction

Shear Capacity =

$$
\sqrt{ }\left[(\mathrm{fb} / \mathrm{Fb})^{\wedge} 2+(\mathrm{fv} / \mathrm{Fv})^{\wedge} 2\right]=
$$ $\mathrm{fa} / \mathrm{Fa}+\mathrm{fb} / \mathrm{Fb}=$

$\mathrm{fa} / \mathrm{Fa}+(\mathrm{fb} / \mathrm{Fb})^{\wedge} 2+(\mathrm{fv} / \mathrm{Fv})^{\wedge} 2=$

32\% < 100\%
$14 \%<100 \%$

Capacity Less than 100\% - OK, Member Is Sufficient For Applied Loading

Deflection Check

Deflection Limit $=$	L / 80	
Allowable Deflection, Δ Allow $=$	1.65 in	
Maximum Deflection, Δ Max $=$	$\mathbf{0 . 1 9}$ in	
Deflection Capacity $=$	12%	$<100 \%$

OK, Allowable Deflection Sufficient
$\begin{aligned} \text { Work Prepared For: } & \text { StruXure Outdoor of Washington } \\ \text { Project: } & 22-52551 \text { - Shane McArthur } \\ \text { Calculations For: } & \text { Loaded Beam To Perimeter Beam Screw Connection }\end{aligned}$

Design Of Steel Spaced Thread Tapping Screw to Aluminum Connections

$\dagger=2020$ Aluminum Design Manual ; * = AMMA TIR-A9-2014

Anchor To Be Analyzed:

\#12-14 SMS, 316 SS, Steel Screws
Nominal Anchor Size Designation, Size $=$ \#12-14 SMS Screw Material, $($ Alloy $)=316$ SS Anchor Ultimate Tensile Strength, Ftu $=100 \mathrm{ksi}$

Anchor Yield Strength, Fy = 65 ksi
Nominal Screw Diameter, D = 0.216" Basic Minor Diameter, Dmin = 0.157"

Tensile Stress Area, As $=0.019 \mathrm{in}^{2}$ Thread Root Area, Ar $=0.019 \mathrm{in}^{2}$ \# Thread Per Inch, $\mathrm{n}=14$Consider Washer?
Washer Diameter, Dw = 0.625"
Anchor Head Diameter, Dws $=0.415^{\prime \prime}$
Nominal Hole Diameter, Dh $=0.216 "$
Is anchor placed in a screw boss/chase/slot?
Countersunk?
Countersink depth, CS Depth =
FALSE

FALSE
0.000"

Minimum Aluminum Edge Distance, de $=0.43^{\prime \prime}$

Member in Contact with Screw Head:

Alloy \& Temper $1=$ 6063-T6
Thickness of Member 1, $\mathrm{t} 1=0.250$
Tensile Ultimate Strength of Member 1, Ftu1 = 30 ksi
Tensile Yield Strength of Member 1, Fty1 = 25 ksi

Member not in Contact with Screw Head:

Alloy \& Temper $2=6063-$ T6
Thickness of Member 2, $\mathrm{t} 2=0.250^{\prime \prime}$
Depth of Full Thread Engagement Into t2, Le $=0.250^{\prime \prime}$
Tensile Ultimate Strength of Member 2, Ftu2 $=30 \mathrm{ksi}$
Tensile Yield Strength of Member 2, Fty2 $=25 \mathrm{ksi}$
Screw Boss Wall Thickness, $\mathrm{t} 3=\quad 0.125^{\prime \prime}$
Min Depth of Full Thread Engagement Into Screw Boss, Le1 = 0.432"
Angle Defining Limits of Screw Engagement, In Screw Chase, $a=86.75$
Ratio of Screw Boss Engaged Thread Area To Total Area, Re= 0.348

Work Prepared For: StruXure Outdoor of Washington
Project: 22-52551-Shane McArthur
Calculations For: Loaded Beam To Perimeter Beam Screw Connection

Allowable Tension Calculation		
Coeff. Dependent On Screw Location, C =	1.0	(\dagger Sect. J.5.4.2)
Coeff. Dependent On Member 2 Thickness, Ks =	1.2	(\dagger Sect. J.5.4.1.1b)
Nominal Pull-Out Strength Of Screw, Rn_t1 =	2494.8 lb	(\dagger Sect. J.5.4.1.1b)
Nominal Pull-Over Strength Of Screw, Rn_t2 =	1492.5 lb	(\dagger Sect. J.5.4.2)
nal Pull-Out Strength From Screw Boss (if applicable), Rn_t3 =	N/A	(\dagger Sect. J.5.4.1.2)
Allowable Pull-Out Strength From Screw Boss, Rn_t4 =	N/A	(* Sect. 14.0))
Allowable Tensile Capacity Of Screw, $\overline{\text { Pnt }}=$	645.3 lb	(* Eqn. 10.4-10.7)
Safety Factor For Connections; Building Type Structures, $\Omega=$	3.0	
Safety Factor For Anchor, $\Omega=$	3.0	
Allowable Tension $=$	498 lb	

Allowable Shear Calculation

| Bearing On Member 1, Rn_v1 $=$ | 3240.0 lb | (\dagger Sect. J.5.5.1) |
| ---: | ---: | ---: | :--- |
| Bearing On Member 2, Rn_v2 $=$ | 3240.0 lb | (\dagger Sect. J.5.5.1) |
| Screw Tilting, Rn_v3 $=$ | 7319.9 lb | (\dagger Sect. J.5.5.2) |

Connection Total Strength \& Capacity Calculations

Work Prepared For: StruXure Outdoor of Washington
 Project: 22-52551-Shane McArthur
 Calculations For: Perimeter Beam To Post Screw Connection

Design Of Steel Spaced Thread Tapping Screw to Aluminum Connections

$\dagger=2020$ Aluminum Design Manual ; * = AMMA TIR-A9-2014

Anchor To Be Analyzed:

\#12-14 SMS, 316 SS, Steel Screws
Nominal Anchor Size Designation, Size = \#12-14 SMS
Screw Material, $($ Alloy $)=316$ SS
Anchor Ultimate Tensile Strength, Ftu = 100 ksi
Anchor Yield Strength, Fy = 65 ksi
Nominal Screw Diameter, D = 0.216"
Basic Minor Diameter, Dmin = 0.157"
Tensile Stress Area, As $=0.019$ in 2
Thread Root Area, Ar = $0.019 \mathrm{in}^{2}$ \# Thread Per Inch, $\mathrm{n}=14$Consider Washêrzasher Diameter, Dw = $0.625^{\prime \prime}$

Anchor Head Diameter, Dws = 0.415"
Nominal Hole Diameter, Dh $=0.216 "$ Is anchor placed in a screw boss/chase/slot? FALSE

Countersunk? FALSE
Countersink depth, CS Depth = 0.000"
Minimum Aluminum Edge Distance, de $=0.43^{\prime \prime}$

Member in Contact with Screw Head:

Alloy \& Temper $1=$ 6063-T6
Thickness of Member 1, $\mathrm{t} 1=0.250$
Tensile Ultimate Strength of Member 1, Ftu1 = 30 ksi
Tensile Yield Strength of Member 1, Fty1 = 25 ksi

Member not in Contact with Screw Head:

Alloy \& Temper $2=6063-\mathrm{T} 6$
Thickness of Member 2, $\mathrm{t} 2=0.188^{\prime \prime}$
Depth of Full Thread Engagement Into t2, Le $=0.188^{\prime \prime}$
Tensile Ultimate Strength of Member 2, Ftu2 $=30 \mathrm{ksi}$
Tensile Yield Strength of Member 2, Fty2 $=25 \mathrm{ksi}$
Screw Boss Wall Thickness, $\mathrm{t} 3=\quad 0.125^{\prime \prime}$
Min Depth of Full Thread Engagement Into Screw Boss, Le1 = 0.432"
Angle Defining Limits of Screw Engagement, In Screw Chase, $a=86.75$
Ratio of Screw Boss Engaged Thread Area To Total Area, Re= 0.348
$\begin{aligned} \text { Work Prepared For: } & \text { StruXure Outdoor of Washington } \\ \text { Project: } & 22-52551-\text { Shane McArthur } \\ \text { Calculations For: } & \text { Perimeter Beam To Post Screw Connection }\end{aligned}$
Allowable Tension Calculation
Coeff. Dependent On Screw Location, C = 1.0 († Sect. J.5.4.2)
Coeff. Dependent On Member 2 Thickness, Ks =
1.2
(† Sect. J.5.4.1.1b)
Nominal Pull-Out Strength Of Screw, Rn_t1 =
Nominal Pull-Over Strength Of Screw, Rn_t2 =
$1579.5 \mathrm{lb} \quad$ (\dagger Sect. J.5.4.1.1b)
$1492.5 \mathrm{lb} \quad(\dagger$ Sect. J.5.4.2)
Nominal Pull-Out Strength From Screw Boss, Rn_t3 =
N/A († Sect. J.5.4.1.2)
Allowable Pull-Out Strength From Screw Boss, Rn_t4 =
N/A (* Sect. 14.0))
$645.3 \mathrm{lb} \quad$ (* Eqn. 10.4-10.7)
Safety Factor For Connections; Building Type Structures, $\Omega=3.0$
Safety Factor For Anchor, $\Omega=3.0$
Allowable Tension = 498 lb

Allowable Shear Calculation

Bearing On Member 1, Rn_v1	$=$	3240.0 lb	(\dagger Sect. J.5.5.1)
Bearing On Member 2, Rn_v2	$=$	2430.0 lb	(\dagger Sect. J.5.5.1)
Screw Tilting, Rn_v3	$=$	4754.4 lb	(\dagger Sect. J.5.5.2)

Connection Total Strength \& Capacity Calculations

	Beam To Post Clip	Post Clip To Post
Anchor Qty At Connection, Qty =	$=6$	6
Required Tensile Loading On Connection, Treq =	$=1316 \mathrm{lb}$	0 lb
Required Shear Loading On Connection, Vreq =	$=537 \mathrm{lb}$	1316 lb
Interaction Exponent Factor, $\mathrm{n}=$	$=1.00$	1.00
Tensile Capacity Of Connection, Tcap =	$=2985 \mathrm{lb}$	2985 lb
Shear Capacity Of Connection, $\mathrm{Vcap}=$	$=2235 \mathrm{lb}$	2235 lb
$\frac{R_{Z}}{T_{C A P}}+\frac{R_{X}}{V_{C A P}}=$	68\%	59\%
Capacity < 100\% O	OK! - Connection De	ign Is Sufficient

Work Prepared For: StruXure Outdoor of Washington
Project: 22-52551-Shane McArthur
Calculations For: Isolated Footer Calculations

Isolated Footing Design Footing Dimensions

Isolated Footing	Width $X=$	36 in	Length $Y=$	36 in	Depth $D=30$ in
Slab At Grade?	Trib Width $=$	0 in	Trib Length $=$	0 in	Thickness $=0$ in

Required Reinforcement

(4) \#5, Each Way, Top \& Bottom

Check Resistance Against Uplift:

Concrete Unit Wt, $\gamma \mathrm{c}=150 \mathrm{pcf}$
Concrete Footing Weight $=3,375 \mathrm{lbs}$
Maximum Applied Uplift Load $=1,316 \mathrm{lbs}$
Uplift Resistance Capcity = 39%
Uplift Required FS = 100\%
Capacity < FS - OK! - Uplift Resistance Sufficient

Check Resistance Against Sliding:
Coef. of Base Friction, $\mu=0.35$
Concrete Footing Weight $=3375.0 \mathrm{lb}$
Static Friction Force = 1,181 lbs
Maximum Applied Shear Load $=537 \mathrm{lbs}$
Sliding Resistance Capacity = $45 \% \quad$ Sliding Required FS $=100 \%$ Capacity < FS - OK! - Sliding Resistance Sufficient

Check Resistance Against Overturning:
Overturning Moment $(\mathrm{X})=4848 \mathrm{lb}-\mathrm{ft} \quad$ (From Applied Uplift, Shear, and Overturning Forces)
Overturning Resistance $(\mathrm{X})=5063 \mathrm{lb}-\mathrm{ft} \quad$ (From Concrete Weight Acting At Footing Center)
Overturning Resistance Capacity $(X)=96 \% \quad$ OT (X) Required FS $=100 \%$
Overturning Moment $(\mathrm{Y})=3476 \mathrm{lb}-\mathrm{ft} \quad$ (From Applied Uplift, Shear, and Overturning Forces)
Overturning Resistance $(\mathrm{Y})=5063 \mathrm{lb}-\mathrm{ft} \quad$ (From Concrete Weight Acting At Footing Center)
Overturning Resistance Capacity $(\mathrm{Y})=69 \% \quad \mathrm{OT}(\mathrm{Y})$ Required FS $=100 \%$ Capacity < FS - OK! - Overturning Resistance Sufficient

Check Soil Bearing Capacity:
Min Soil Bearing Pressure $=1500$ psf
Frictional Resistance $=250 \mathrm{psf}$
Maximum Bearing Capacity of Footing $=2333$ psf
Maximum Applied Gravity Loading $=3,788$ lbs
Footing Pressure at Heel, $\mathrm{q}_{\text {Heel }}=420 \mathrm{psf}$

Footing Pressure at Toe, $\mathrm{q}_{\text {Toe }}=1172 \mathrm{psf}$
Bearing Pressure Capacity $=\quad 50 \% \quad$ Bearing Required FS $=100 \%$
Capacity < FS - OK! - Soil Bearing Capacity Sufficient

* To Be Verified By Others If Greater Than 1500 psf
* To Be Verified By Others If Greater Than 250 psf
$q_{\text {heel }}=\frac{P_{\text {total }}}{W \cdot L}-\frac{6 M_{x}}{W^{2} \cdot L}-\frac{6 M_{y}}{L^{2} \cdot W}$ $q_{\text {toe }}=\frac{P_{\text {total }}}{W \cdot L}+\frac{6 M_{x}}{W^{2} \cdot L}+\frac{6 M_{y}}{L^{2} \cdot W}$

Work Prepared For: StruXure Outdoor of Washington
 Project: 22-52551 - Shane McArthur

Design Check Of A Fully Supported Aluminum -6063-T6, 12" x 12" x 0.25" Baseplate For Bending And Punching Shear

Member Properties

Plate Length, $\mathrm{I}=$	12.0 in	
Plate Width, $\mathrm{b}=$	12.0 in	
Plate Thickness, $\mathrm{tb}=$	0.250 in	
Moment of Inertia About Axis \|	To Flange, $\mathrm{Ix}=$	0.016 in 4
Section Modulus (About X-Axis), $\mathrm{Sc}=$	$0.125 \mathrm{in}^{3}$	
Baseplate Yield Stress, Fy $=$	15.0 ksi	

Applied Loading

Maximum Tension Applied To Baseplate, $\mathrm{P}=1,316 \mathrm{lbs}$
Maximum Moment Applied To Baseplate, $\mathrm{M}_{\mathrm{MAX}}=1.53 \mathrm{k}-\mathrm{ft}$

Check Plate Thickness for Bending

Tension/Compression At Either Side Of Plate (Located At Anchorline), T1 = $2.0 \mathrm{kip} \quad(=\mathrm{Mreq} / \mathrm{Sep})$
Resultant Loading On Baseplate Considering Triangular Load Distribution, $\mathrm{T}_{\text {Load }}=$
Moment At Plate Section From Post Centerline To Anchor Centerline ($\mathrm{L}=0$ in), Mplate = Determine The Value Of m :
Plate Cantilever Dimension, $m=2.20$ in (= 0.5 (tb-0.95 d))
Where The Depth of the Column Section, $d=$
Determine Thickness Of Base Plate:
4.6 kip $\quad(=1 / 2 \times(\operatorname{Sep} / 2) \times$ T1 $)$
2.7 kip-in (= $2^{*} W$ * $\left.L / 9^{*} \sqrt{3}\right)$
8.00 in

λ	$=$	1	
$n^{\prime}=d / 4$	$=$	2.00 in	
Max Plate Cantilever Dimension, $\mathrm{c}=\operatorname{MAX}\left(\mathrm{m}, \lambda \mathrm{n}^{\prime}\right)=$	2.20 in		
Required Plate Thickness, tp $=$	$0.100 \mathrm{in} \quad\left(=2^{*} \mathrm{c}^{*}\left([\mathrm{~T} 1+\mathrm{P} / 2] / \mathrm{A} 1^{*} \mathrm{Fy}\right)^{*} 0.5\right)$		

Plate Thickness OK! - Bending Resistance Is Sufficient

Check Plate Thickness for Shear Punchout

Vertical Load On Plate Due To Moment At Either Side Of

Post (Located At Weld Throat), Vmax $=$	2.96 Kip	$(=\mathrm{Mreq} / \mathrm{b}$ _post $)$
Shear Stress Developed In Plate, fa $=$	1.0 ksi	$(=\mathrm{Vmax} /$ (Plate Thickness* Width) $)$
Allowable Shear Stress Of Plate, Fac $=$	16.2 ksi	$(=0.6$ * FyA)
Shear Punchout Capacity $=$	6%	
Plate Strength OK! - Shear Punchout Resistance Is Sufficient		

Work Prepared For:	StruXure Outdoor of Washington
Project:	$22-52551$ - Shane McArthur
Calculations For:	Baseplate Anchorage To Concrete Foundation

Anchored Connection Design for 12" x 12" x 0.25" Baseplate With 4 Anchors, Equally Spaced Considering (4) 3/8" Dia, Has Threaded Rods With Hy-200 Epoxy @ 4.5" Embed

Post \& Baseplate Connection

Anchor Layout \& Spacing

Anchor Properties

Anchor Considered $=$	$\mathbf{3 / 8}$
Anchor Diameter $=$	0.375 in
Embedment For Maximum Capacity $=$	4.5 in
Design Tensile Strength Of Anchor $=$	$7,790 \mathrm{lb}$
Design Shear Strength Of Anchor $=$	$16,780 \mathrm{lb}$
Concrete Safety Factor $=$	4

Anchor Strength Reduction Factors

Edge Distance	Tension
Edge Distance For Full Capacity $=$	14.00 in
Minimum Edge Distance Allowed $=$	1.75 in
Reduction At Min Edge Distance $=$	22%
Edge Distance Considered	$=$
Edge Distance Reduction Factor	$=$

Shear
14.00 in
1.75 in
5%
13.50 in
96%

Anchor Spacing

Spacing For Full Capacity $=$	14.00 in	48.00 in
Minimum Spacing Allowed $=$	1.88 in	1.08 in
Reduction At Min Spacing $=$	57%	52%
Spacing Considered $=$	9.00 in	9.00 in
Spacing Reduction Factor $=$	82%	59%
	Tension	Shear
ed Anchor Design Strength $=$	$3,715 \mathrm{lb}$	$5,738 \mathrm{lb}$
hor Group Design Strength $=$	$7,431 \mathrm{lb}$	$22,954 \mathrm{lb}$

Work Prepared For: StruXure Outdoor of Washington
Project: 22-52551 - Shane McArthur
Calculations For: Baseplate Anchorage To Concrete Foundation

Applied Loading \& Design Calculations

Per ACl 318-14 Ch 17.2.3.4.3 (d) For Tensile Loading And 17.2.3.5.3(c) For Shear Loading, Using Seismic Overstrength Factor, Ω, As Shown Below

Seismic Loading Overstrength Factor Considered?
Seismic Design Category =
D
Moment Due to Seismic Shear $=\quad 4.134$ kip-ft
Moment Due To Wind Loading $=\quad 1.531 \mathrm{kip}-\mathrm{ft}$
Seismic Design Category D - Overstrength Considered
Seismic Overstrength Factor, $\Omega=2$

Loading On Baseplate \& Anchors

Applied Tension, $\operatorname{Tmax}=1,316 \mathrm{lbs}$
Applied Moment, Mmax $=4134.0 \mathrm{lb}-\mathrm{ft}$
Applied Tension Due to Moment = 4,725 lbs = Applied Moment $/$ Tension Anchors Centroid Applied Shear, Vmax = 537 lbs Tension Shear
Total Applied Design Loading $=6,041 \mathrm{lbs}$
537 lbs
Anchor Interaction Capacity

$$
\begin{gathered}
n= \\
\left(\frac{T_{\text {Applied }}}{T_{\text {Strength }}}\right)^{n}+\left(\frac{V_{\text {Applied }}}{V_{\text {Anchor Group Strength OK! }}}\right)^{n}=884 \% \\
V_{\text {Strength Anchors As Detailed Sufficient For Use }}
\end{gathered}
$$

Work Prepared For: StruXure Outdoor of Washington
Project: 22-52551-Shane McArthur
Calculations For: Ledger Beam Connection to Host

Connection Design of 0.5" Dia Wood Lag Screw (3 per 16 In O.C. Spacing) To Southern Yellow Pine Host Structure

Host Properties

Anchorage

Anchor Strength

$$
\text { Anchor Host Edge Distance }=0.75 \text { in }
$$

$$
\begin{array}{rc}
\text { Anchor Shear Capacity } \mathrm{V}_{\text {cap }}= & 283 \mathrm{lbs} \\
\text { Anchor Tensile Capacity } \mathrm{T}_{\text {cap }}= & 848 \mathrm{lbs} \\
\text { Shear Per Spacing, Per Anchor, } \mathrm{V}_{\text {applied }}= & 222 \mathrm{lbs} \\
\text { Tension Per Spacing, Per Anchor, } \mathrm{T}_{\text {applied }}= & 83 \mathrm{lbs}
\end{array}
$$

Anchor Interaction Capacity = 88\%
Anchor Strength OK! - Ledger host Attachment Is Sufficient

Host Structure Reactions

Linear Shear Applied To Host $=498.7 \mathrm{lb} / \mathrm{ft} \quad(=9975 \mathrm{lbs}$ Total Shear On Host)
Linear Tension Applied To Host $=187.1 \mathrm{lb} / \mathrm{ft} \quad(=3743 \mathrm{lbs}$ Total Tension On Host)

